scholarly journals Effect of a combination of TGFβ and IGF growth factors on the chondrogenic potential of mesenchymal bone marrow stem cells

2021 ◽  
Vol 2 (216) ◽  
pp. 78-83
Author(s):  
Anna Zhernosechenko ◽  
◽  
Yanina Isaykina ◽  
Tatiana Filipovich

The authors studied the influence of the combination of TGF? and IGF growth factors, as well as the differentiation time, on the induction of MSC chondrogenesis in vitro. It is proved that MSCs located in 2D and 3D systems, when exposed to TGF?/ IGF, showed the signs of early chondroblast-like cells in 7 days. The TGF?/ IGF used for the induction of MSCs is more preferred, because it results in a more pronounced hypertrophic-suppression effect. The absence of significant differences in gene expression (excepting Sox9) on the 7th and 21st days of chondrogenic differentiation allows the process to be reduced in vitro to 7 days.

Nephrology ◽  
2015 ◽  
Vol 20 (9) ◽  
pp. 591-600 ◽  
Author(s):  
Juan He ◽  
Yan Wang ◽  
Xingyan Lu ◽  
Bei Zhu ◽  
Xiaohua Pei ◽  
...  

2009 ◽  
Vol 13 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Ulrich Reinhart Goessler ◽  
Peter Bugert ◽  
Karen Bieback ◽  
Jens Stern-Straeter ◽  
Gregor Bran ◽  
...  

2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1505-1505
Author(s):  
Wendy W. Pang ◽  
Elizabeth A. Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 1505 Poster Board I-528 Aging of the human hematopoietic system is associated with an increase in the development of anemia, myeloid malignancies, and decreased adaptive immune function. While the hematopoietic stem cell (HSC) population in mouse has been shown to change both quantitatively as well as functionally with age, age-associated alterations in the human HSC and progenitor cell populations have not been characterized. In order to elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated and compared HSC and other hematopoietic progenitor populations prospectively isolated via fluorescence activated cell sorting (FACS) from 10 healthy young (20-35 years of age) and 8 healthy elderly (65+ years of age) human bone marrow samples. Bone marrow was obtained from hematologically normal young and old volunteers, under a protocol approved by the Stanford Institutional Review Board. We determined by flow cytometry the distribution frequencies and cell cycle status of HSC and progenitor populations. We also analyzed the in vitro function and generated gene expression profiles of the sorted HSC and progenitor populations. We found that bone marrow samples obtained from normal elderly adults contain ∼2-3 times the frequency of immunophenotypic HSC (Lin-CD34+CD38-CD90+) compared to bone marrow obtained from normal young adults (p < 0.02). Furthermore, upon evaluation of cell cycle status using RNA (Pyronin-Y) and DNA (Hoechst 33342) dyes, we observed that a greater percentage of HSC from young bone marrow are in the quiescent G0- phase of the cell cycle compared to elderly HSC, of which there is a greater percentage in G1-, S-, G2-, or M-phases of the cell cycle (2.5-fold difference; p < 0.03). In contrast to the increase in HSC frequency, we did not detect any significant differences in the frequency of the earliest immunophenotypic common myeloid progenitors (CMP; Lin-CD34+CD38+CD123+CD45RA-), granulocyte-macrophage progenitors (GMP; Lin-CD34+CD38+CD123+CD45RA+), and megakaryocytic-erythroid progenitors (MEP; Lin-CD34+CD38+CD123-CD45RA-) from young and elderly bone marrow. We next analyzed the ability of young and elderly HSC to differentiate into myeloid and lymphoid lineages in vitro. We found that elderly HSC exhibit diminished capacity to differentiate into lymphoid B-lineage cells in the AC6.21 culture environment. We did not, however, observe significant differences in the ability of young and elderly HSC to form myeloid and erythroid colonies in methylcellulose culture, indicating that myelo-erythroid differentiation capacity is preserved in elderly HSC. Correspondingly, gene expression profiling of young and elderly human HSC indicate that elderly HSC have up-regulation of genes that specify myelo-erythroid fate and function and down-regulation of genes associated with lymphopoiesis. Additionally, elderly HSC exhibit increased levels of transcripts associated with transcription, active cell-cycle, cell growth and proliferation, and cell death. These data suggest that hematopoietic aging is associated with intrinsic changes in the gene expression of human HSC that reflect the quantitative and functional alterations of HSC seen in elderly bone marrow. In aged individuals, HSC are more numerous and, as a population, are more myeloid biased than young HSC, which are more balanced in lymphoid and myeloid potential. We are currently investigating the causes of and mechanisms behind these highly specific age-associated changes in human HSC. Disclosures: Weissman: Amgen: Equity Ownership; Cellerant Inc.: ; Stem Cells Inc.: ; U.S. Patent Application 11/528,890 entitled “Methods for Diagnosing and Evaluating Treatment of Blood Disorders.”: Patents & Royalties.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Liangjie Huang ◽  
Lingxian Yi ◽  
Chunli Zhang ◽  
Ying He ◽  
Liangliang Zhou ◽  
...  

Cell-based therapy serves as an effective way for cartilage repair. Compared with a limited source of autologous chondrocytes, adipose-derived stem cells (ADSCs) are proposed as an attractive cell source for cartilage regeneration. How to drive chondrogenic differentiation of ADSCs efficiently remains to be further investigated. TGF-β3 has shown a strong chondrogenic action on ADSCs. Recently, fibroblast growth factor 18 (FGF-18) has gained marked attention due to its anabolic effects on cartilage metabolism, but existing data regarding the role of FGF-18 on the chondrogenic potential of mesenchymal stem cells (MSCs) are conflicting. In addition, whether the combined application of FGF-18 and TGF-β3 would improve the efficiency of the chondrogenic potential of ADSCs has not been thoroughly studied. In the current study, we isolated human ADSCs and characterized the expression of their surface antigens. Also, we evaluated the chondrogenic potential of FGF-18 on ADSCs using an in vitro pellet model by measuring glycosaminoglycan (GAG) content, collagen level, histologic appearance, and expression of cartilage-related genes. We found that FGF-18, similarly to TGF-β3, had a positive impact on chondrogenic differentiation and matrix deposition when presented throughout the culture period. More importantly, we observed synergistic effects of FGF-18 and TGF-β3 on the chondrogenic differentiation of ADSCs in the in vitro pellet model. Our results provide critical information on the therapeutic use of ADSCs with the help of FGF-18 and TGF-β3 for cartilage regeneration.


Neuroreport ◽  
2002 ◽  
Vol 13 (9) ◽  
pp. 1185-1188 ◽  
Author(s):  
Byoung J. Kim ◽  
Jeong H. Seo ◽  
James K. Bubien ◽  
Young S. Oh

Sign in / Sign up

Export Citation Format

Share Document