scholarly journals Effect of deficit irrigation on evapotranspiration, water use efficiency, yield and growth of Hamadanian pepper in greenhouse cultivation

2018 ◽  
Vol 9 (3) ◽  
pp. 23-37
Author(s):  
H. Zare Abyaneh ◽  
A. Cheshmeh Ghassabani ◽  
H. Babolhavaeji ◽  
A. Afrouzi ◽  
◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


2011 ◽  
Vol 128 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Iván García Tejero ◽  
Víctor Hugo Durán Zuazo ◽  
Juan Antonio Jiménez Bocanegra ◽  
José Luis Muriel Fernández

Sign in / Sign up

Export Citation Format

Share Document