Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages

2020 ◽  
Vol 263 ◽  
pp. 109112
Author(s):  
Huiping Zhou ◽  
Shaozhong Kang ◽  
Fusheng Li ◽  
Taisheng Du ◽  
Manoj K. Shukla ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 148
Author(s):  
Minghui Cheng ◽  
Haidong Wang ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Xiukang Wang

To investigate the effects of alternate partial root-zone irrigation (APRI) and water deficit at different growth stages on maize growth, physiological characteristics, the grain yield, and the water use efficiency (WUE), a pot experiment was conducted under a mobile automatic rain shelter. There were two irrigation methods, i.e., conventional irrigation (CI) and APRI; two irrigation levels, i.e., mild deficit irrigation (W1, 55%~70% FC, where FC is the field capacity) and serious deficit irrigation (W2, 40%~55% FC); and two deficit stages, i.e., the seedling (S) and milking stage (M). Sufficient irrigation (W0: 70%~85% FC) was applied throughout the growing season of maize as the control treatment (CK). The results indicated that APRI and CI decreased the total water consumption (ET) by 34.7% and 23.8% compared to CK, respectively. In comparison to CK, APRI and CI increased the yield-based water use efficiency (WUEY) by 41% and 7.7%, respectively. APRI increased the irrigation water efficiency (IWUE) and biomass-based water use efficiency (WUEB) by 8.8% and 25.5% compared to CK, respectively. Additionally, ASW1 had a similar grain yield to CK and the largest harvest index (HI). However, the chlorophyll and carotenoid contents were significantly reduced by 13.7% and 23.1% under CI, and by 11.3% and 20.3% under APRI, compared to CK, respectively. Deficit irrigation at the milking stage produced a longer tip length, resulting in a lower grain yield. Based on the entropy weight method and the technique for order preference by similarity to an ideal solution (TOPSIS) method, multi-objective optimization was obtained when mild deficit irrigation (55%~70% FC) occurred at the seedling stage under APRI.


2021 ◽  
Author(s):  
Faisal Zeineldin ◽  
Yousef Al-Molhim

Water scarcity is a major constraint facing vegetable production sustainability in open field farming of arid regions like the Kingdom of Saudi Arabia. This study was carried out in an open field of the Research and Training Station of King Faisal University in the eastern region of the Kingdom. The objective was to assess the influences of the polymer addition (PA), deficit irrigation regime (DIR), and their combination on the production and water use efficiency (WUE) of muskmelons. PA treatments of 0.0, 0.2 and 0.4% and the irrigation treatments of 100, 75 and 50% of reference evapotranspiration (ET<sub>o</sub>), were imposed throughout the growth stages of muskmelons under surface drip irrigation (DI) and subsurface drip irrigation (SDI). The polymer addition of 0.4% enhanced the field water holding capacity of the medium sandy soil within the locality of the emitters by 43.6%. The soil water content of the surface layer within the vicinity of the polymer amended soil layer increased in a range of 72.4 to 99.4% to the combined influences of the 0.4% PA with the DI and SDI, but were marked more under the SDI. The combination of the 100% ET<sub>o</sub> DIR with polymer additions significantly (P &lt; 0.05) enhanced the muskmelon fruit yield (MFY) under the SDI compared to DI. The PA of 0.4% improved WUE and MFY by 67.7, 70.4% under the SDI, and 58.6, 24.2% under the DI, respectively. Without the polymer addition (0.0% PA), the MFY significantly (P &lt; 0.05) decreased with the increase of the DIRs under both DI and SDI.


Author(s):  
Kiflom Degef Kahsay ◽  
Kidane Welde Reda

Maize (Zea Mays L.) is one of the most important food crops worldwide. In Ethiopia, it is one of the leading food grains selected to assume a national commodity crop to support the food self-sufficiency program of the country. Maize is fairly sensitive to water stress and excessive moisture stress. This is due to variation in sensitivity of different growth stages to water stress. The study was conducted to determine the water use efficiency of maize under deficit irrigation practice without significant reduction in yield and to identify crop growth stages which can withstand water stress. The experiment was conducted at the Alamata Agricultural Research center experimental site Kara Adishabo Kebele, Raya Azebo district. The experiment was laid out in randomized complete block design (RCBD) with three replications and six levels of irrigation water applications as possible treatments. Analysis was done to yield and water use efficiency of maize using R statistical software and the mean difference was estimated using the least significant difference (LSD) comparison. The highest grain (33.72qt/ha) and biomass yield (148.4qt/ha) was obtained from the 50% deficit irrigation at late growth. The maximum irrigation water use efficiency was obtained from both 50% deficit at all the four growth stages (0.5418 kg/ha) and at 50% deficit at late growth stage (0.446 kg/m3). And by comparing the grain yield obtained at the 50% deficit at late growth stage (33.72 qt/ha) and grain yield obtained at 50% deficit at all growth stages (23.34 qt/ha), the 50% deficit at late growth stage shows better result. The 50% deficit of crop water requirement did not affect the yield components (plant height & number of cobs per plant) of maze. Therefore applying irrigation water by reducing the crop water requirement by 50% at the late growth stage has a significant contribution for sustainable and efficient irrigation water utilization at moisture deficient areas without a significant loss on grain and biomass yield.


2017 ◽  
Vol 60 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Liwang Ma ◽  
Zhiming Qi ◽  
Yanjun Shen ◽  
Liang He ◽  
Shouhua Xu ◽  
...  

Abstract. Deficit irrigation has been shown to increase crop water use efficiency (WUE) under certain conditions, even though the yield is slightly reduced. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated with measured data from a large weighing lysimeter from 1998 to 2003 at the Yucheng Experimental Station in the North China Plain for daily evapotranspiration (ET), soil water storage (0-120 cm), leaf area index (LAI), aboveground biomass, and grain yield. The calibrated model was then used to explore crop responses to ET-based irrigation management using weather data from 1958 to 2015 and identify the most suitable ET-based irrigation schedules for the area. Irrigation amount was determined by constraining irrigation to a percentage of potential crop ET (40%, 60%, 80%, and 100% ETc) at the various growth stages of wheat [planting to before winter dormancy (P-D), green up to booting (G-B), booting to flowering (B-F), and flowering to maturity (F-M)] and of maize [planting to silking (P-S) and silking to maturity (S-M)], subject to seasonal water availability limits of 100/50, 200/100, 300/150, and 400/200 mm and no water limit for wheat/maize seasons, respectively. In general, wheat was more responsive to irrigation than maize, while greater influence of weather variation was simulated on maize than on wheat. For wheat with seasonal water limits, the highest average WUE was simulated with the highest targeted ETc levels at both the G-B and B-F stages and lower targeted ETc levels at the P-D and F-M stages. However, the highest average grain yield was simulated with the highest targeted ETc levels at all four growth stages for no water limit and the 400 mm water limit, or at both the G-B and B-F stages for the 300 and 200 mm water limits. For maize, lower targeted ETc levels after silking did not significantly affect maize production due to the high season rainfall, but irrigation of 60% ETc before silking was recommended. These results could be used as guidelines for precision irrigation along with real-time weather information. Keywords: Deficit irrigation, Evapotranspiration, Growth stage, RZWQM, Water use efficiency, Wheat and maize.


Sign in / Sign up

Export Citation Format

Share Document