scholarly journals Designing of a Control Approach for Uncertain Fractional Order Systems with Indirect Adaptive Fuzzy Controller and Frational Order Sliding Mode

2020 ◽  
Vol 14 (2) ◽  
pp. 89-99
Author(s):  
Pouria Jafari ◽  
Mohammad Teshnehlab ◽  
Mahsan Tavakoli-Kakhki ◽  
◽  
◽  
...  
Author(s):  
Tsung-Chih Lin ◽  
Chia-Hao Kuo ◽  
Valentina E. Balas

In this paper, in order to achieve tracking performance of uncertain fractional order chaotic systems an adaptive hybrid fuzzy controller is proposed. During the design procedure, a hybrid learning algorithm combining sliding mode control and Lyapunov stability criterion is adopted to tune the free parameters on line by output feedback control law and adaptive law. A weighting factor, which can be adjusted by the trade-off between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive fuzzy controller and direct adaptive fuzzy controller. To confirm effectiveness of the proposed control scheme, the fractional order chaotic response system is fully illustrated to track the trajectory generated from the fractional order chaotic drive system. The numerical results show that tracking error and control effort can be made smaller and the proposed hybrid intelligent control structure is more flexible during the design process.


Author(s):  
Md Meftahul Ferdaus ◽  
Sreenatha G. Anavatti ◽  
Matthew A. Garratt ◽  
Mahardhika Pratama

Abstract Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous MAVs. Some desiring features of the FW MAV are quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability contrasted with similar-sized fixed and rotary wing MAVs. Inspired by the FW MAV’s advanced features, a four-wing Nature-inspired (NI) FW MAV is modelled and controlled in this work. The Fuzzy C-Means (FCM) clustering algorithm is utilized to construct the data-driven NIFW MAV model. Being model free, it does not depend on the system dynamics and can incorporate various uncertainties like sensor error, wind gust etc. Furthermore, a Takagi-Sugeno (T-S) fuzzy structure based adaptive fuzzy controller is proposed. The proposed adaptive controller can tune its antecedent and consequent parameters using FCM clustering technique. This controller is employed to control the altitude of the NIFW MAV, and compared with a standalone Proportional Integral Derivative (PID) controller, and a Sliding Mode Control (SMC) theory based advanced controller. Parameter adaptation of the proposed controller helps to outperform it static PID counterpart. Performance of our controller is also comparable with its advanced and complex counterpart namely SMC-Fuzzy controller.


Author(s):  
Bachir Bourouba

In this chapter a new direct adaptive fuzzy optimal sliding mode control approach is proposed for the stabilization of fractional chaotic systems with different initial conditions of the state under the presence of uncertainties and external disturbances. Using Lyapunov analysis, the direct adaptive fuzzy optimal sliding mode control approach illustrates asymptotic convergence of error to zero as well as good robustness against external disturbances and uncertainties. The authors present a method for optimum tuning of sliding mode control system parameter using particle swarm optimization (PSO) algorithm. PSO is a robust stochastic optimization technique based on the movement and intelligence of swarm, applying the concept of social interaction to problem solving. Simulation examples for the control of nonlinear fractional-order systems are given to illustrate the effectiveness of the proposed fractional adaptive fuzzy control strategy.


Sign in / Sign up

Export Citation Format

Share Document