scholarly journals Graphene Trails on PECVD Hydrogenated Amorphous Silicon Carbide Films SiC-a: H by Laser Writing at Room Temperature

2020 ◽  
Vol 15 (2) ◽  
pp. 1-4
Author(s):  
Deissy Johanna Feria ◽  
Marcelo Carreño ◽  
Ricardo Rangel ◽  
Ines Pereyra

The production of high quality graphene without the need for catalyst metals as in the case of chemical vapor deposition (CVD) techniques remain a challenge. Silicon carbide is one of the materials with potential to form graphene films on its surface through thermal decomposition when subjected to high temperatures and ultrahigh vacuum. This technique is highly desirable since it enables the elimination of corrosion and transfer steps, which can leave residues in the graphene structure and alter its quality, as well as its electrical proprieties, however it is a costly and time consuming method. In this work, we present the production of graphene trails by direct laser radiation writing at room temperature and atmospheric pressure on hydrogenated amorphous silicon carbide films (SiC-a:H) produced by Plasma Enhanced Chemical Vapor Deposition (PECVD).  Graphene trails of approximately 1cm x 4μm were obtained with patterns designed by computer Aided Design (CAD) software. Variations were made in both scanning speed and laser focal length, identifying a great dependence on the graphene quality with these two parameters. The best results of the Raman Spectroscopy Mappings showed high quality graphene with distance between point defects (LD) of 20nm, crystallite size (La) of 25nm and few layers (2-3). In addition, the electrical measurements from Au/Ti (20nm/100nm) electrodes deposited by electron beam evaporation showed high conductivity, with sheet resistances (Rs) from 0.7kΩ to 1.3 kΩ per square. This technique opens a great possibility of manufacturing devices for applications in electronics, being a fast, efficient and low cost method.

1999 ◽  
Vol 557 ◽  
Author(s):  
Xiao Liu ◽  
R.O. Pohl ◽  
R.S. Crandall

AbstractWe observe an increase of the low-temperature internal friction of hydrogenated amorphous silicon prepared by both hot-wire and plasma-enhanced chemical-vapor deposition after extended light-soaking at room temperature. This increase, and the associated change in sound velocity, can be explained by an increase of the density of two-level tunneling states, which serves as a measure of the lattice disorder. The amount of increase in internal friction is remarkably similar in both types of films although the amount and the microstructure of hydrogen are very different. Experiments conducted on a sample prepared by hot-wire chemical-vapor deposition show that this change anneals out gradually at room temperature in about 70 days. Possible relation of the light-induced changes in the low-temperature elastic properties to the Staebler-Wronski effect is discussed.


Sign in / Sign up

Export Citation Format

Share Document