scholarly journals Perancangan bilah tipe taperless pada kincir angin: Studi kasus di PT. Lentera Bumi Nusantara Tasikmalaya

2019 ◽  
Vol 9 (2) ◽  
pp. 104
Author(s):  
N.H. Sari ◽  
W.G. Laksamana

The studies related to new renewable energy are still being developed. This study aims to design taperless blades on wind turbines, case studies at PT. Lentera Bumi Nusantara. The wind speed conditions in Tasikmalaya which are considered relatively moderate can be designed efficiently by the appropriate wind characteristics in Tasikmalaya. Microsoft Excel, Qblade, Solid Works, and aerodynamic equations have been used to design a blade. The result shows that the blades have a solid, easy to make and affordable structure that can produce mechanical power at low wind speeds with a radius, diameter hub and chord length of 0.8 m, 0.19 m and 0.12 m, respectively. A twisting angle at the base and at the end of the blade are 11.14° and 7.17°. respectively. The conclusion of this design exhibited that the blade design with the same edge blade can be applied to moderate wind speeds to produce efficient, compact and affordable wind turbines with wind characteristics in Tasikmalaya, Indonesia.

INFO-TEKNIK ◽  
2018 ◽  
Vol 19 (2) ◽  
pp. 195
Author(s):  
Arif Rochman Fachrudin

Potential and utilization of renewable energy in Indonesia is still very small. Oneof the renewable energy sources is wind energy. The use of wind turbines, windenergy is converted into mechanical energy and can then generate electricitythrough a generator. Wind turbines are environmentally friendly, inexpensive,easy to operate and easy to maintain. The purpose of this study was to determinethe effect on the performance of the number of blades and wind speed for thevertical axis wind turbine type darrieus H with the NACA profile 3412 with apitch 0o angle. This study uses an experimental method, with a number of bladesand varying wind speeds. The number of blades given is 2 units, 3 units and 4units. The speed of the given wind is 3.3 m / s, 3.5 m / s, 3.7 m / s, and 3.9 m / s.Performance is obtained from the electrical power produced by a generatormounted on the turbine axis. The results showed that the turbine performance wasinfluenced by the number of blades. The highest power in the number of bladeswas 4 units at a wind speed of 3.3 m / s which resulted in electric power of 5.166Watt. The lowest electric power is produced on turbines with a number of units of2 units at a wind speed of 3.3 m / s, which is 3.0173 Watts. The blade is 2 unitsand 3 units, at a wind speed of 3.3 m / s; 3.5 m / s; 3.7 m / s and 3.9 m / s, theelectrical power produced is relatively the same, while in blades 4 units, thedifference in wind speed (3.3 m / s; 3.5 m / s; 3.7 m / s and 3.9 m / s) produce adifference in the electrical power produced


Author(s):  
Kishor Sontakke ◽  
Samir Deshmukh ◽  
Sandip Patil

The growing demand for electrical energy for industrial and domestic use, coupled with the limited amount of available fossil fuel reserves and its negative effects on the environment, have made it necessary to seek alternative and renewable energy sources. The use of renewable energy is promoted worldwide to be less dependent on conventional fuels and nuclear energy. Therefore research in the field is motivated to increase efficiency of renewable energy systems. This study aimed to study potential of micro wind turbine and velocity profile through shroud for low wind speeds. Although there is a greater inclination to use solar panels because of the local weather conditions, there are some practical implications that have place the use of solar panels in certain areas to an end. The biggest problem is panel stealing. Also, in some parts of the country the weather is more appropriate to apply wind turbines. Thus, this study paying attention on the design of a new concept to improve wind turbines to be appropriate for the low wind speeds in India. The concept involves the implementation of a concentrator and diffuser to a wind turbine, to increase the power coefficient. Although the wind turbine was not tested for starting speeds, the realization of the shroud should contribute to improved starting of the wind turbine at lower wind speeds. The configuration were not manufactured, but simulated with the use of a program to obtain the power production of the wind turbine over a range of wind speeds. These values were compared to measured results of an open wind turbine developed. The most important topic at hand when dealing with a shrouded wind turbine is to find out if the overall diameter or the blade diameter of the turbine should be the point of reference. As the wind turbine is situated in a shroud that has a larger diameter than the turbine blades, some researchers believe that the overall diameter should be used to calculate the efficiency. The benefits of shrouded wind turbines are discussed.


2020 ◽  
Vol 14 (5) ◽  
pp. 953-974
Author(s):  
Zahid Hussain Hulio ◽  
Wei Jiang

Purpose The rapid rising of renewable energy sources particularly wind energy cannot be ignored. The numerical increase in wind energy farms throughout the world is the best example. The purpose of this paper is to assess the basic question of whether wind characteristics affect the performance and cost of energy. The importance of this question cannot be ruled out while comparing renewable energy to a conventional form of energy more specifically especially for the developing country where the cost of energy is very high. Design/methodology/approach The research design of this paper is consists of an assessment of local wind characteristics of the wind farm site using Weibull k and c parameters. The performance model is used to assess the performance of the wind turbine (WT) corresponding to local wind characteristics. The wind correlation with WT in terms of changing wind speed has been assessed to quantify the effects of wind speed on the WT behavior and failure of WT components. Similarly, the power curve of WT is assessed and compared with the International Electrotechnical Commission standards 61400-12-2. The WT power coefficient and tip speed ratio corresponding to wind speed is also investigated. The energy volume and cost of energy lost model is used to determine the cost and volume loss of energy/kWh of the wind farm. Findings The findings of practical wind farms showed that the wind conditions of the site are showing a strong tendency that can be determined from the results of Weibull k and c parameters. The k and c parameters are observed to be 3.44 and 9.16 m/s, respectively, for a period of a year. The standard deviation is observed to be 2.56 for a period of a year. WT shows the efficient behavior can be obtained from the power coefficient and tip speed of WT at different wind speeds. Also, wind farm observation showed that to be some increasing wind speed cause of based WT component failures. The results of energy volume and cost/kWh assessment showed that the major portion of energy volume and cost of energy is lost owing to network, voltage dip and frequency surge, electrical and mechanical components failures. Originality/value Generally, it can be concluded that the WTs are now able to cope with variable wind speeds. However, the results of this paper are showing that WT performance and availability decreased due to increased wind speeds. It can also be a reason to decreased volume and increase the cost of energy/kWh.


2019 ◽  
Vol 12 (2) ◽  
pp. 92
Author(s):  
Susilo Susilo ◽  
Bambang Widodo ◽  
Eva Magdalena Silalahi ◽  
Atmadi Priyono

Bentuk sudu taper linier merupakan bentuk sudu yang paling optimal untuk kecepatan angin yang rendah. Jumlah sudu yang baik untuk kecepatan angin rendah berkisar antara 3-7 buah sudu, namun desain sudu dengan menggunakan airfoil dan profil pada sudut pasang sudu yang bagaimana memberikan daya keluaran dan tegangan keluaran yang optimal. Turbin angin didesain dengan 2 bilah dan 4 bilah dengan sudut pasang yang bisa diatur untuk mendapatkan perbedaan daya optimal masing-masing desain. Pengujian dilakukan di 3 area berbeda untuk mendapatkan gambaran geografis kondisi angin yang berbeda khususnya masalah kecepatan angin di ksiaran 2 m/s - 7 m/s. Pengujian dilakukan dengan luas penampang turbin angin (A) sebesar 3m2 Hasil penelitian menunjukkan bahwa nilai terbaik diperoleh pada kecepatan angin maksimal 4 m/s dan jumlah blade 4  sedangkan untuk nilai terkecil diperoleh pada kecepatan angin 3 m/s dan jumlah blade 2 yaitu. Untuk nilai TSR maksimal pada kecepatan maksimal 4 m/s terjadi pada jumlah blade 4, sedangkan untuk nilai terendah pada kecepatan angin 3 m/s dihasilkan pada jumlah blade 2. Melalui pengukuran berbasis teknologi smart monitoring system, dari penelitian diperoleh semakin tinggi kecepatan angin maka tegangan keluaran semakin tinggi. Semakin tinggi tegangan keluaran, semakin tinggi daya keluaran pada generator. Sudut pasang ? dan jumlah sudu mempengaruhi kecepatan putaran rotor turbin angin. Kecepatan putaran rotor turbin angin berelasi dengan tegangan keluaran generator. pada sudut pasang ? dan jumlah sudu 4, diperoleh daya keluaran yang sebesar 150 watt namun pada kecepatan angin 7 m/s daya turbin yang dihasilkan mencapai 600 watt. Dengan kondisi ini cukup memenuhi untuk alternatif cadangan listrik skala rumah tangga khusunya di pedesaan dan daerah terpencil (rural area). The linear taper blade shape is the most optimal blade shape for low wind speeds. The number of blades that are good for low wind speeds ranges from 3-7 blades, but the blade design uses an airfoil and profile on the blade mounting angle which is how to provide optimal output power and output voltage. Wind turbines are designed with 2 blades and 4 blades with adjustable tide angles to get the difference in the optimal power of each design. Tests were carried out in 3 different areas to obtain a geographical description of different wind conditions, especially the problem of wind speed in the range of 2 m / s - 7 m / s. Tests carried out with a cross section area of  wind turbines (A) of 3m2 The results showed that the best value was obtained at a maximum wind speed of 4 m / s and number 4 blade while the smallest value was obtained at wind speeds of 3 m / s and number 2 blades namely. For the maximum TSR value at a maximum speed of 4 m / s occurs in the number of 4 blades, while for the lowest value at 3 m / s wind speed is produced on the number of blades 2. From the research, the higher the wind speed, the higher the output voltage. The higher the output voltage, the higher the output power at the generator. The ? tide angle and number of blades affect the speed of the wind turbine rotor rotation. The rotational speed of the wind turbine rotor is related to the generator output voltage. at the tide angle ? and number of blades 4, the output power of 150 watts is obtained but with wind speed 7 m/s turbine power 600 watt achieved. With this condition, it is sufficient for alternative household electricity reserves, especially in rural and remote areas (rural areas).


2019 ◽  
Vol 6 (1) ◽  
pp. 64
Author(s):  
Jamal Jamal

Savonius wind turbines are wind turbines that canoperate at low wind speeds, this type of turbine is very suitable tobe used in several places in Indonesia. The research aims toimprove the performance of the Savonius wind turbine withvariations in the number of turbine blades as well as variations inthe velocity of wind speed. The research method wasexperimental where wind turbine testing was carried out withvariations in the number of turbine blades with number of 2, 3and 4 blades, other variations carried out were wind speed at 3.5;4,5; 5.5 and 6.5 m/s. The study results show that the 2-bladeturbine produces greater rotation, but the torque moment islower than the 3 and 4 blade turbines, this can be seen in the lowefficiency of the 2 blade turbine at low wind speeds with highloading. At 3.5 m / s wind turbines 2 blade turbines haveefficiency that tends to be the same as 3 and 4 blade turbines upto 0.5 N but at loads of 0.6 - 1.2 N 2 blade turbines have lowerefficiency, while at wind speeds of 4.5 - 6.5 m / s 2 blade turbineshave greater efficiency than turbines 3 and 4 blades up to a loadof 1.2 N but if the load is added then the efficiency of 2-bladeturbines can be smaller than efficiency 3 and 4-blade.


Author(s):  
Mohammed S. Mayeed ◽  
Adeel Khalid

Today’s wind turbines are designed in a wide range of vertical and horizontal axis types. In this study, several wind turbines are designed for low wind speed areas around the world mainly for domestic energy consumption. The wind speed range of 4–12 mph is considered, which is selected based on the average wind speeds in the Atlanta, GA and surrounding areas. These areas have relatively low average wind speeds compared to various other parts of the United States. Wind energy has been identified as an important source of renewable energy. Traditionally wind energy utilization is limited to areas with higher wind speeds. In reality a lot of areas in the world including Atlanta, GA., have low average wind speeds and demand high energy consumption. In most cases, wind turbines are installed in remote offshore or away from habitat locations, causing heavy investment in installation and maintenance, and loss of energy transfer over long distances. Therefore, the main focus of this study is to extract wind energy domestically at low wind speeds. A few more advantages of small scale wind turbines include reduced visibility, less noise and reduced detrimental environmental effects such as killing of birds, when compared to traditional large turbines. With the latest development in wind turbine technology it is now possible to employ small scale wind turbines that have much smaller foot print and can generate enough energy for small businesses or residential applications. The low speed wind turbines are typically located near residential areas, and are much smaller in sizes compared to the large out of habitat wind turbines. In this study, several designs of wind turbines are modeled using SolidWorks. Virtual aerodynamic analysis is performed using SolidWorks Flow simulation software, and then optimization of the designs is performed based on maximizing the starting rotational torque and acceleration. From flow simulations, forces on the wind turbine blades and structures are calculated, and used in subsequent stress analysis to confirm structural integrity. Critical insight into the low wind speed turbine design is obtained using various configurations and the results are discussed. The study will help identify bottlenecks in the practical and effective utilization of low speed wind energy, and help devise possible remedial plans for the areas around the globe that get low average wind speeds.


Author(s):  
Ali A. Ameri ◽  
Majid Rashidi

In this paper, the authors analyze a design for a wind tower intended for areas of low wind speeds. The wind tower consists of a combination of several rooftop size turbines arranged alongside a cylindrical structure that acts as a Wind Deflecting Structure (WDS). The WDS amplifies the effective wind speed thus allowing the turbine rotors to operate under lower ambient wind speeds. Analyses were performed using simple models as well as more sophisticated CFD methods employing Steady and Unsteady Reynolds Averaged Navier-Stokes methodology. The effect of the wind amplification was shown on a commercial small wind turbine power output map. Also, a wind turbine rotor flow was computed as operating alongside the WDS and compared to the computed operation of isolated turbines at equal effective and ambient wind velocities. The computational analyses of this work suggest that the power output of isolated rooftop wind turbines deployed at low to moderate wind speed may be matched by installing wind turbines alongside a cylindrical wind deflecting structure operating at lower wind speeds. Other benefits of the arrangement are also enumerated.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3007 ◽  
Author(s):  
C. Lopez-Villalobos ◽  
O. Rodriguez-Hernandez ◽  
R. Campos-Amezcua ◽  
Guillermo Hernandez-Cruz ◽  
O. Jaramillo ◽  
...  

Wind speed turbulence intensity is a crucial parameter in designing the structure of wind turbines. The IEC61400 considers the Normal Turbulence Model (NTM) as a reference for fatigue load calculations for small and large wind turbines. La Ventosa is a relevant region for the development of the wind power sector in Mexico. However, in the literature, there are no studies on this important parameter in this zone. Therefore, we present an analysis of the turbulence intensity to improve the understanding of local winds and contribute to the development of reliable technical solutions. In this work, we experimentally estimate the turbulence intensity of the region and the wind shear exponent in terms of atmospheric stability to analyze the relation of these design parameters with the recommended standard for large and small wind turbines. The results showed that the atmosphere is strongly convective and stable in most of the eleven months studied. The turbulence intensity analysis showed that for a range of wind speeds between 2 and 24 m/s, some values of the variable measured were greater than those recommended by the standard, which corresponds to 388 hours of turbulence intensity being underestimated. This may lead to fatigue loads and cause structural damage to the technologies installed in the zone if they were not designed to operate in these wind speed conditions.


2014 ◽  
Vol 986-987 ◽  
pp. 235-238
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

For the simulation of wind turbine, the wind speed is extremely important parameters and indicators to measure the output power of the unit is the wind load. Therefore, in the airflow dynamics and simulation of wind loads before establishing an accurate wind speed model is crucial. At present, the application for wind turbines COMSOL fan, fan blades and wind load simulation field, the extremely important wind speed model is not perfect, most of the research is confined to a single constant wind speed, wind speed virtually ignored the magnitude and direction of change, on changes over time and space at the same time is one of the few studies of wind, so find a way to accurately describe the range of wind speeds, and can be combined well with COMSOL method can greatly improve the aerodynamic performance of wind turbines the overall level of .


Sign in / Sign up

Export Citation Format

Share Document