Impact of Seed Powder of Dacryodes Edulis on the Levels of Some Polycyclic Aromatic Hydrocarbons and Heavy Metals in Crude Oil Polluted Telfairia Occidentalis Model

Author(s):  
Okon Effiom Etim ◽  
Utibe Evans Bassey ◽  
Anthony Chibuzor Nnamudi
2013 ◽  
Vol 2 (1) ◽  
pp. 150 ◽  
Author(s):  
Jamil Rima ◽  
Karine Assaker

<p>In this study, B-Cyclodextrinn polymerized with beetroot fibers (Bio-polymer), was prepared and applied to the removal of organic and inorganic contaminants from wastewater. An investigation into the use of cross-linked cyclodextrin polyurethanes copolymerised with beetroot fibers as adsorbents for organic pollutants and heavy metals has yielded very useful results which may have an impact in future water treatment applications.</p> The Biopolymer was tested in water contaminated by dyes, polycyclic aromatic hydrocarbons (PAH) and heavy metals. The effectiveness to eliminate dyes such as methylene blue and Rhodamine B with concentrations around 100 ppm was more than 99%, while the pyrene,which was chosen as an example among PAHs, showed a potential of elimination exceeding the 97% for solutions of 10 ppm. Also, heavy metals, such as Lead, Zn, and Cu, were tested and showed an efficacy exceeding the 99.8%. The results indicated that the biopolymer developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or from contaminated groundwater.


2019 ◽  
Author(s):  
Temidayo O Elufisan ◽  
Isabel C Rodríguez-Luna ◽  
Omotayo O Oyedara ◽  
Alejandro Sánchez-Varela ◽  
Armando Hernandez Mendoza ◽  
...  

Background: Stenotrophomonas are ubiquitous gram-negative bacteria which survive in a wide range of environments. They can use many substances for their growth and are known to be intrinsically resistant to many antimicrobial agents. They have been tested for biotechnological applications, bioremediation and antimicrobial agents because of their recalcitrant nature to many toxic compounds. Method. Stenotrophomonas sp. Pemsol was isolated from a crude oil contaminated soil. The capability of this isolate to tolerate and degrade polycyclic aromatic hydrocarbons (PAHs) (anthracene, anthraquinone, biphenyl, naphthalene, phenanthrene, phenanthridine and xylene) was evaluated on Bush Nell Hass medium containing PAHs as the unique carbon sources. The metabolites formed after 30-day degradation of naphthalene by Pemsol were analyzed using Fourier Transform Infra-red Spectroscopic (FTIR), Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). Results. Complete degradation of naphthalene at a concentration of 1 mg/mL was obtained and a newly formed catechol peak obtained from the UPLC-MS and GC-MS confirmed the degradation. The strain Pemsol lacked the ability to produce biosurfactant so that it cannot bio-emulsify PAHs. The whole genome analysis of Stenotrophomonas sp. Pemsol revealed a wealth of genes for hydrocarbon utilization and interaction with the environment and the presence of 147 genes associated with the degradation of PAHs, some of which are strain-specific on the genomic islands. Few genes are associated with bio-emulsification indicated that Pemsol without biosurfactant production has a genetic basis. This is the first report of the complete genome analysis sequence of a PAH-degrading Stenotrophomonas. Stenotrophomonas sp. Pemsol possesses features that makes it a good bacterium for genetic engineering and will therefore be a good tool for the remediation of crude oil or PAH-contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document