Self-Assembled Monolayer Modification of Nickel Oxide Hole-Transport in Perovskite Solar Cells

Author(s):  
Neha Singh ◽  
Yu-Tai Tao
2019 ◽  
Vol 12 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. Yalcin ◽  
M. Can ◽  
C. Rodriguez-Seco ◽  
E. Aktas ◽  
R. Pudi ◽  
...  

Herein, we studied the use of two different Self Assembled Monolayers (SAMs) made of semiconductor hole transport organic molecules to replace the most common p-type contact, PEDOT:PSS, in PiN methyl ammonium lead iodide perovskite solar cells (PSCs).


2020 ◽  
Vol 5 (9) ◽  
pp. 2935-2944 ◽  
Author(s):  
Yuanbao Lin ◽  
Yuliar Firdaus ◽  
Furkan H. Isikgor ◽  
Mohamad Insan Nugraha ◽  
Emre Yengel ◽  
...  

Author(s):  
Nga Phung ◽  
Marcel Verheijen ◽  
Anna Todinova ◽  
Kunal Datta ◽  
Michael Verhage ◽  
...  

Author(s):  
Ersan Y. Muslih ◽  
Md. Shahiduzzaman ◽  
Md. Akhtaruzzaman ◽  
Mohammad Ismail Hossain ◽  
LiangLe Wang ◽  
...  

Abstract Nickel oxide (NiOx) hole transport layer was made from nickel oxide powder by a simple process and non-stabilizer or chelating agent. We used ethanol as main solvent and nitric acid less than 2% as co-solvent. The formation reaction mechanism of NiOx thin film was also studied. Perovskite solar cells (PSCs) with the optimum thickness of 70 nm exhibited power conversion efficiency as high as 12.99%, which is superior to those of PSCs with their counterparts. The moisture stability of NiOx based device (non-encapsulated) remained above 70% of their initial output after 700h storage at ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document