scholarly journals Effects of Crush Process on Methane Conversion Efficiency in Thermophilic Anaerobic Digestion with Coffee Grounds

2014 ◽  
Vol 12 (3) ◽  
pp. 245-257
Author(s):  
Yugo TAKABE ◽  
Kohei YAMASE ◽  
Kohsuke WATANABE ◽  
Yasunari KUSUDA ◽  
Tadao MIZUNO ◽  
...  
2008 ◽  
Vol 57 (2) ◽  
pp. 283-289 ◽  
Author(s):  
M. Y. Lee ◽  
J. H. Cheon ◽  
T. Hidaka ◽  
H. Tsuno

The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70°C, with 12.6% at 80°C. The average protein solubilization reached 31% at 80°C. Methane conversion efficiency following the acidification was around 85% on average at 55°C, but decreased with increasing temperature and methane gas was not produced over 73°C. As well, bacteria affiliated with the methanogens dominated the population below 65°C, while those affiliated with acidogens were predominant over 73°C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.


1996 ◽  
Vol 30 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Richard M. Dinsdale ◽  
Freda R. Hawkes ◽  
Dennis L. Hawkes

2011 ◽  
Vol 64 (11) ◽  
pp. 2135-2142 ◽  
Author(s):  
F. Wang ◽  
T. Hidaka ◽  
T. Oishi ◽  
S. Osumi ◽  
J. Tsubota ◽  
...  

To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.


2011 ◽  
Vol 64 (2) ◽  
pp. 534-540 ◽  
Author(s):  
W. Charles ◽  
N. P. Carnaje ◽  
R. Cord-Ruwisch

The anaerobic digestion process is globally applied to the treatment of highly concentrated wastes such as industrial and rural effluents, and sewage sludge. However, it is known to be relatively unstable. When loaded with high concentrations of organic material, unwanted volatile fatty acids (VFA) are often produced rather than methane (CH4) gas which can lead to digester acidification and failure. This study investigated digester behaviour under high loading rates, testing the usefulness of stoichiometric methane conversion efficiency as a digester control parameter at high loading rates. Our results show that, in general, the CH4 production rate was proportional to the feed rate (loading rate). However, at very high loading rates, the CH4 production rate was not proportional to the increase in the feeding rate. Consequently, VFA accumulated and the H2 partial pressure increased. The proportionality of the loading rate and gas production rate is stoichiometrically expressed as the conversion efficiency. We found that conversion efficiency was a useful indicator as an early warning of digester imbalance. The digester remained stable at conversion efficiencies above 75%. Dropping below 70% signified the onset of digester failure. As loading rate and methane production data are readily available on-line in most anaerobic digestion plants, the conversion efficiency can be monitored on-line and used as an efficient control technique to maintain safe operation of anaerobic digesters at high loading rates.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 79-84 ◽  
Author(s):  
K. Syutsubo ◽  
Y. Nagaya ◽  
S. Sakai ◽  
A. Miya

Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 °C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m−3 d−1 was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m−3 d−1). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.


RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 26452-26460 ◽  
Author(s):  
Wei Qiao ◽  
Shofie Mohammad ◽  
Kazuyuki Takayanagi ◽  
Yu-you Li

In this research, thermophilic anaerobic digestion of coffee grounds and sludge was carried out using a 12 liter continuously stirred tank reactor (CSTR) to identify the inhibitory factors and to evaluate the energy production.


2021 ◽  
Vol 123 ◽  
pp. 52-59
Author(s):  
L. Megido ◽  
L. Negral ◽  
Y. Fernández-Nava ◽  
B. Suárez-Peña ◽  
P. Ormaechea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document