scholarly journals Characterization of Diagenetic Fluids of the Upper Jurassic-Lower Cretaceous Carbonate Platform of the Galicia Margin at Ocean Drilling Program Site 639: Evidence for Dolomitization by Hypersaline Brines

Author(s):  
J.A. Haggerty ◽  
M.P. Smith
2018 ◽  
Vol 40 (1) ◽  
pp. 182 ◽  
Author(s):  
A. Photiades ◽  
N. Carras ◽  
V. Bortolotti ◽  
M. Fazzuoli ◽  
G. Principi

Three stratigraphical sections from eastern Vourinos (Rhodiani area) to eastern Vermion massifs revealed the same age of the latérite events affecting the serpentinized ophiolite complex after its emplacement on the Pelagonian domain. All of them consist from their base upwards of serpentinized harzburgite slivers with lateritic unconformities on the top, followed by transgressive upper Lower Cretaceous neritic limestones. At Kteni locality (Rhodiani area), a laterite horizon, lying on top of serpentinites, is covered by transgressive neritic limestones with Salpingoporella urladanasi, assigning a Barremian - Albian age, followed by Orbitolinidae limestones. At Tsimodia locality (NNW to the previous), the latente horizon, lying on karstified Upper Jurassic reef limestones (which are the top member of a carbonate platform body tectonically lying on the ophiolites), is trans gres s ively overlain by iron-rich pisolith levels and Aptian limestones of the wackes tone-muds tone type, also containing Salpingoporella urladanasi, followed by Cenomanian Orbitolina limestones. Finally, the third examined locality, further north-eastward to the previous, is situated at the eastern slopes of Vermion massif and more precisely at the NWpart of Koumaria village. There, it can again be observed that the lateritized serpentinite slivers are overlain transgress ively by neritic limestones with Salpingoporella urladanasi, passing upwards into Upper Cretaceous recrystallized limestones with Orbitolinidae and rudist fragments and, finally, toflysch deposition. These features allow to recognize that the emersion and the consecutive lateritization of the thrust-emplaced ophiolites in Vourinos and Vermion massifs in the northern Pelagonian domain, starting from the Latest Jurassic, was followed by a marine transgression beginning from the Barremian - Albian, firstly under restricted and brackish carbonate platform conditions, marked by the presence of the dasycladalean alga Salpingoporella urladanasi, followed by normal salinity carbonate platform conditions. The neritic sedimentation was stable until the Early Cenomanian. Subsequently, a deepening, earlier at Vourinos and later at Vermion, resulted in deposition of pelagic and turbiditic carbonates and then offlysch.


2021 ◽  
Author(s):  
Julia Gutierrez-Pastor ◽  
Carlota Escutia ◽  
Ursula Röhl ◽  
Ariadna Salabarnada ◽  
Francisco Jimenez-Espejo

<p>During the Holocene, 180 m of diatom ooze sediments were deposited in the Antarctic Wilkes Land margin continental shelf at site U1357A (Integrated Ocean Drilling Program Expedition 318, Escutia et al., 2011). Holocene sediments are dominated by rhythmic laminated deposits above a poorly sorted gravelly siltstone diamicton from the Last Glacial Maximum (LGM). CT-scans reveal three events of gravel/sand/silt sediments interbedded within the laminated sediments and interpreted as ice rafted debris (IRD).  Two of these events (from 185,1 to 185,45 and 174, 8 to 175,37 meters below seafloor, mbsf) are characterized by dispersed large clasts (1-5cm) within a muddy matrix at the base, transitioning to the top to millimetre-size clasts that are either aligned with the dark and light laminae or dispersed. A third event (176,2 to 177,2 mbsf) is characterized by a structureless sediment sequence with high concentrations of dispersed clasts that are up to 1-2 cm size. We used ImageJ/Fiji software, to conduct a quantitative analysis of grains bigger than 1mm in CT Scan 3D images. Measured parameters include grain size (Feret length), grain orientation (Feret angle), circularity and roundness, among other. In addition, grey scale profiles have been created from the sediment CT-scan images as a density proxy. Quantitative data and density profiles have been used to aid the sedimentological characterization of the Holocene deglaciation section and to infer depositional environment and patterns of deglaciation.</p><p>Escutia, C., Brinkhuis, H., Klaus, A., and the Expedition 318 Scientists, Proc. IODP, 318: Site 1357. Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/​iodp.proc.318.105.2011</p><p> </p>


2012 ◽  
Vol 63 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Mihai Michetiuc ◽  
Camelia Catincuţ ◽  
Ioan Bucur

An Upper Jurassic-Lower Cretaceous carbonate platform from the Vâlcan Mountains (Southern Carpathians, Romania): paleoenvironmental interpretationThe results of a biostratigraphic and sedimentological study of the Upper Jurassic-Lower Cretaceous limestones cropping out in the southern sector of the Vâlcan Mountains in Romania are presented, including the definition of microfacies types, fossil assemblages and environmental interpretation. Six microfacies types (MFT 1-MFT 6) have been identified, each of them pointing to a specific depositional environment. The deposits are characteristic of a shallow carbonate platform. They contain normal marine or restricted marine facies deposited in low or high energy environments from the inner, middle and outer platform. The age attribution of these deposits (Late Jurassic to Berriasian-Valanginian-?Hauterivian, and Barremian) is based on foraminiferal and calcareous algae associations. The micropaleontological assemblage is exceptionally rich in the Vâlcan Mountains and brings new arguments for dating the Upper Jurassic-Lower Cretaceous limestones in this area.


Author(s):  
Paul F. Green ◽  
Peter Japsen

Apatite fission-track analysis (AFTA) data in two Upper Jurassic core samples from the 231 m deep Blokelv-1 borehole, Jameson Land, East Greenland, combined with vitrinite reflectance data and regional AFTA data, define three palaeo-thermal episodes. We interpret localised early Eocene (55– 50 Ma) palaeotemperatures as representing localised early Eocene heating related to intrusive activity whereas we interpret late Eocene (40–35 Ma) and late Miocene (c. 10 Ma) palaeotemperatures as representing deeper burial followed by successive episodes of exhumation. For a palaeogeothermal gradient of 30°C/km and likely palaeo-surface temperatures, the late Eocene palaeotemperatures require that the Upper Jurassic marine section in the borehole was buried below a 2750 m thick cover of Upper Jurassic – Eocene rocks prior to the onset of late Eocene exhumation. As these sediments are now near outcrop at c. 200 m above sea level, they have been uplifted by at least 3 km since maximum burial during post-rift thermal subsidence. The results are consistent with estimates of rock uplift on Milne Land since the late Eocene and with interpretation of Ocean Drilling Program (ODP) data off South-East Greenland suggesting that mid-Cenozoic uplift of the margin triggered the marked influx of coarse clastic turbidites during the late Oligocene above a middle Eocene to upper Oligocene hiatus.


2019 ◽  
Vol 56 (3) ◽  
pp. 306-320 ◽  
Author(s):  
Merve Özyurt ◽  
M. Ziya Kırmacı ◽  
Ihsan S. Al-Aasm

The Upper Jurassic – Lower Cretaceous Berdiga Formation of the Eastern Pontides, Turkey, represents a carbonate platform succession composed of pervasively dolomitized intra-shelf to deep-shelf facies. In this area, polymetallic deposits occur as veins and lenses within the Berdiga Formation in close proximity to its upper contact with the overlying formation. Three different types of replacive dolomites occur in the formation: (i) microcrystalline dolomite, (ii) fabric-preserving dolomite, and (iii) fabric-destructive dolomite. Replacive dolomites are Ca rich and nonstoichiometric (Ca56–58Mg42–44) and are characterized by a pronounced negative shift in oxygen (–11.38‰ to –4.05‰ Vienna Pee Dee Belemnite (VPDB)), δ13C values of 0.69‰ to 3.13‰ VPDB, radiogenic 87Sr/86Sr ratios (0.70753 to 0.70884), and extremely high Fe (2727–21 053 ppm) and Mn (1548–27 726 ppm) contents. All dolomite samples have low Y/Ho ratios (23–40), and they also contain highly variable contents of rare earth elements (REE) (7–41). REE patterns of dolomites normalized to Post-Archean Australian shale show a distinct positive Eu anomaly (1.3–2.1) and slightly flattened Ce anomalies (0.8–1.1). Integration of petrographic and geochemical studies reveals the history of a variety of diagenetic processes highly affected by hydrothermal alteration, which include dolomitization, recrystallization, dissolution, silicification, and pyrite mineralization associated with the emplacement of the polymetallic mineralization.


Sign in / Sign up

Export Citation Format

Share Document