X-ray detection of tensile plastic deformation in tough pitch copper.

1991 ◽  
Vol 3 (4) ◽  
pp. 179-183
Author(s):  
Kohji IDEMITSU ◽  
Takashi ENDOH ◽  
Mamoru KAWAKAMI ◽  
Makaki KOGA
Keyword(s):  
2016 ◽  
Vol 685 ◽  
pp. 525-529
Author(s):  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Andrey V. Belyakov ◽  
Ivan A. Shulepov

The changes of the phase composition, structure and physicomechanical properties of Ti‑40 mas % Nb after severe plastic deformation are investigated in this paper. By the methods of microstructural, X-ray diffraction analysis and scanning electron microscopy it is determined that phase and structural transformations occur simultaneously in the alloy after severe plastic deformation. The martensitic structure formed after tempering disappears. The inverse α'' → β transformation occurs. The structure consisting of oriented refined grains is formed. The alloy is hardened due to the cold working. The Young modulus is equal to 79 GPa and it is less than that of initial alloy and close to the value obtained after tempering. It is possible that Young modulus is reduced by additional annealing.


2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


2004 ◽  
Vol 387-389 ◽  
pp. 339-342 ◽  
Author(s):  
W. Pantleon ◽  
H.F. Poulsen ◽  
J. Almer ◽  
U. Lienert

2007 ◽  
Vol 22 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Balder Ortner

The equation ε(φ, ψ, hkl)=Fij(φ, ψ, hkl)σij can be directly deduced from Hooke’s law. It is shown that the matrix Fij(φ, ψ, hkl) which is usually called X-ray elastic factors, behaves as a second rank tensor. Since this behaviour is the only criterion for the question of whether or not it is a tensor, the F-matrix must be regarded as a second rank tensor. This allows us to make some statements about the structure of the F-matrix on the basis of Neumann’s principle, to find relationships among F-matrices in different measurement directions, and to apply the methods and strategies for the measurement of a second rank tensor. All this is shown in a few examples. It is further shown that a consistent use of the F-matrix can replace all methods for data evaluation which makes use of linear regressions and, in addition, avoids all difficulties and disadvantages of these methods. One of these disadvantages is that the sin2 ψ-method, as well as its derivatives, is generally not correct least square fits of the measured data. This is also shown in an example. The more complicated cases with stress or constitution gradients in the range of the probed volume or stress measurement after plastic deformation are not discussed.


2018 ◽  
Vol 18 ◽  
pp. 73-78
Author(s):  
Mokhtar Bayarassou ◽  
Mosbah Zidani ◽  
Hichem Farh

The scope of this work is to study of microstructural changes and mechanical properties during natural and artificial ageing treatment of AGS Alloy wire cold drawn with different deformation at ENICAB in Biskra. And as well to know the phase formation during different deformation of aluminum alloys wires. as well as the combined influence of the plastic deformation rate and the aging temperature. Wire section reduction shows a change in microstructure and texture. The methods of characterization used in this work are: scanning electron microscope and X-ray diffraction, micro hardness (Hv).


2000 ◽  
Vol 6 (S2) ◽  
pp. 1104-1105
Author(s):  
P. Mock

It is well known that heat treatment induced plastic deformation of GaAs substrates is a key factor that reduces the yield of electronic devices in manufacturing processes on an industrial scale. Our recent X-ray topographic survey showed that a quite common, radiatively heated, non In-bonded sample holder design can cause severe plastic deformation in two-inch diameter GaAs (001) substrates when they are heated up to about 650 °C in a molecular beam epitaxy (MBE) growth chamber. Unintentional plastic deformation occurred for all three investigated MBE machines, which were of different make, but we overcame the technical problem by modifications to the sample holder of a user built MBE machine. At present, however, there is no theoretical model available that can satisfactorily describe the experimental observations including the spatial distribution of the majority of the dislocation bundles.The plastic deformation up to about 98 % is realised by bundles of dislocations which start at the sample edges around the four <100> peripheral areas,


Sign in / Sign up

Export Citation Format

Share Document