In situ X-ray peak shape analysis of embedded individual grains during plastic deformation of metals

2004 ◽  
Vol 387-389 ◽  
pp. 339-342 ◽  
Author(s):  
W. Pantleon ◽  
H.F. Poulsen ◽  
J. Almer ◽  
U. Lienert
1986 ◽  
Vol 82 ◽  
Author(s):  
J. C. Bilello

ABSTRACTThe application of relatively low resolution x-ray topography methods, typically ∿ 1 micrometer, is limited in studies which involve large scale dislocation networks. However, the ability to non-destructively image wide areas for “thick” specimens at high intensity with a tunable x-ray source makes the synchrotron an ideal probe for a range of problems previously inaccessible by other methods. Some examples will be discussed such as: (a) crack initiation and propagation in fatigued bicrystals, (b) real-time in situ plastic deformation studies in strain-annealed Mo crystals, and (c) strain distributions in vapor deposited and LPE thin films on Si and GaAs substrates.


1997 ◽  
Vol 15 (6) ◽  
pp. 3032-3035 ◽  
Author(s):  
M. Schleberger ◽  
A. Cohen Simonsen ◽  
S. Tougaard ◽  
J. L. Hansen ◽  
A. Nylandsted Larsen

2002 ◽  
Vol 738 ◽  
Author(s):  
R.I. Barabash ◽  
G.E. Ice ◽  
N. Tamura ◽  
J.R. Patel ◽  
B.C. Valek ◽  
...  

ABSTRACTElectromigration during accelerated testing can induce early stage plastic deformation in Al interconnect lines as recently revealed by the white beam scanning X-ray microdiffraction. In the present paper, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during anin-situelectromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking after electric current flow. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined.


2016 ◽  
Vol 57 (9) ◽  
pp. 1447-1453 ◽  
Author(s):  
Hiroki Adachi ◽  
Yui Karamatsu ◽  
Shota Nakayama ◽  
Tomotaka Miyazawa ◽  
Masugu Sato ◽  
...  

2004 ◽  
Vol 812 ◽  
Author(s):  
Arief S. Budiman ◽  
N. Tamura ◽  
B. C. Valek ◽  
K. Gadre ◽  
J. Maiz ◽  
...  

AbstractAn unexpected mode of plastic deformation was observed in damascene Cu interconnect test structure during an in-situ electromigration experiment and before the onset of visible microstructural damages (void, hillock formation). We show here, using a synchrotron technique of white beam X-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the line width. The grain texture of the line might also play an important role. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. This early stage behavior can have a direct bearing on the final failure stage of electromigration.


Sign in / Sign up

Export Citation Format

Share Document