scholarly journals Study of Capacitor Placement to Improve the Voltage Profile in Contingency Conditions of the 150 kV Madura Electricity Power System

Author(s):  
Sujito ◽  
Moh Zainul Falah ◽  
M. Rodhi Faiz
Author(s):  
M. J. Tahir ◽  
Badri. A. Bakar ◽  
M. Alam ◽  
M. S. Mazlihum

<p>Mostly loads are inductive in nature in content of distribution side for any power system. Due to which system faces high power losses, voltage drop and reduction in system power factor. Capacitor placement is a common method to improve these factors. To maximize the reduction of inductive load impact, optimal capacitor placement (OCP) is necessary with the objective function of system cost minimization for voltage profile enhancement, power factor improvement and power losses minimization. As OCP is a non-linear problem with equality and inequality limitations, so the stated objective depends upon he placement and sizes of the capacitor banks. Electrical transient analyzer program (ETAP) software is used for the evaluation and modelling the power systems and genetic algorithm (GA) is used as an optimization technique for the minimization of the objective function. In this paper, to show the effectiveness of the technique IEEE 4bus,33bus system and NTDC 220KV real time grid system is modelled and evaluated in terms of objective minimization i-e maximum cost saving of the power system</p>


2021 ◽  
Vol 34 (4) ◽  
pp. 589-603
Author(s):  
Ahmad Alsakati ◽  
Chockalingam Vaithilingam ◽  
Kameswara Prakash ◽  
Reynato Gamboa ◽  
Arthanari Jagadeeshwaran ◽  
...  

Due to increased load demand, the power system developers are encouraged to meet power quality requirements. Using harmonic filter and capacitor bank is one of the essential solutions in mitigating power quality issues. This research aims to mitigate harmonics and improve the voltage in distribution systems by using ETAP. For this purpose, a distribution system in Homs city is considered, which is a part of Syrian power system. The capacitor banks are designed using numerical analysis and Optimal Capacitor Placement (OCP). The results indicate that this approach enhances the voltage profile, which is reflected in some buses. The voltage profile is effectively improved on several buses, and power losses are significantly reduced. The Total Harmonic Distortions (THDs) and Individual Harmonic Distortions (IHDs) of the subjected buses are reduced. Moreover, the power factor is improved from 0.877 to 0.926 for the studied system.


Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


2012 ◽  
Vol 61 (2) ◽  
pp. 239-250 ◽  
Author(s):  
M. Kumar ◽  
P. Renuga

Application of UPFC for enhancement of voltage profile and minimization of losses using Fast Voltage Stability Index (FVSI)Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices requires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the location of UPFC improves the voltage profile and also minimize the real power loss.


The power demand is increasing globally at a higher rate than the possible increase in the generation. The increased demand requierements put additional burdon on the existing transmission lines and sometimes burdoned beyond their power carrying capacities. Increase in power demand either due modernization of power system, industrialization leads to congestion problem and abruptly affects the stable and reliable operation of power system. Redesign and reconstruction of power system according to load requirements everytime is not an economical and viable solution. Other possible solution to the problem is use of FACTS devices. The use of FACTS devices the problems like increase in load demand, high losses in transmission line and dip in receiving end voltage can be eliminated or easily tackeled. In this paper, Static Synchronous Series Compensator as one of FACTS device has been used for improvement of voltage profile of different buses and power carrying capacity of the transmission lines. The main objective of this paper is to make a comparative investigation between compensated and uncompensated power system in terms of enhancement of power carrying capacity with low losses and improvement of voltage profiles of buses in the transmission network. The performance of uncompensated power system has been compared with compensated power system with the use of MATLAB/ Simulink software.


Author(s):  
Shreya Mahajan ◽  
Shelly Vadhera

Purpose The purpose of this study/paper is to integrate distributed generation optimally in power system using plant propagation algorithm. Distributed generation is a growing concept in the field of electricity generation. It mainly comprises small generation units installed at calculated points of a power system network. The challenge of optimal allocation and sizing of DG is of utmost importance. Design/methodology/approach Plant propagation algorithm and particle swarm optimisation techniques have been implemented where a weighting factor-based multi-objective function is minimised. The objective is to cut down real losses and to improve the voltage profile of the system. Findings The results obtained using plant propagation algorithm technique for IEEE 33-bus systems are compared to those attained using particle swarm optimisation technique. The paper deals with the optimisation of weighting factor-based objective function, which counterpoises the losses and improves the voltage profile of the system and, therefore, helps to deliver the best outcomes. Originality/value This paper fulfils an identified need to study the multi-objective optimisation techniques for integration of distributed generation in the concerned power system network. The paper proposes a novel plant-propagation-algorithm-based technique in appropriate allocation and sizing of distributed generation unit.


Sign in / Sign up

Export Citation Format

Share Document