scholarly journals Distribution Network Reliability Theoretical Analysis and Assessment Online Considering Load Levels and Power Supply Transferring at Different Period

Author(s):  
Zhanhua Huang ◽  
Chengmin Wang ◽  
Mingcan Feng ◽  
Yong Liu ◽  
Hongzhong Li
2021 ◽  
Author(s):  
Huazhen Cao ◽  
Chong Gao ◽  
Yaxiong Wu ◽  
Hao Li ◽  
Zijun Wang ◽  
...  

This paper presents an estimation method of distribution network reliability planning Investment Based on sequence linearization correlation analysis. Firstly, the planning business index closely related to reliability are selected, and the control objectives of reliability index are decomposed into the promotion objectives of each planning business index through sequence linearization correlation analysis. Then, the typical engineering construction scenarios corresponding to each planning business index are constructed, and the investment required to achieve the corresponding promotion objectives of business index is estimated according to the typical scenarios, Finally, the total investment of reliability planning is obtained. The example shows that the method can be applied to the actual distribution network with complex grid conditions and various planning schemes, and can provide powerful guidance for power supply enterprises to improve the efficiency of capital use


2013 ◽  
Vol 341-342 ◽  
pp. 1380-1383
Author(s):  
Yan Yan Cui ◽  
Da Pu Zhao ◽  
Wei Liu ◽  
Yu Long

It is difficult to evaluate and analyze power supply reliability of large-scale medium voltage distribution network by detailed modeling method. The paper proposes a power supply reliability evaluation method of large-scale medium voltage distribution network, which is based on the network reliability characteristics model. Lines with similar structural characteristics are designated as one model. The reliability index of each mode can be represented by the typical lines. The assessment principle, process and the advantages of this method are elaborated. The medium voltage distribution network of Nanjing area is taken as an example to evaluate power supply reliability. And the results are compared with historical statistics. The result shows that the method can greatly reduce the workload and has high accuracy. It can be used to evaluate the reliability of large-scale medium voltage distribution network.


Author(s):  
Aritra Chakraborty ◽  
Saurabh Kumar ◽  
Urmil M. Thaker ◽  
Amal S ◽  
Paul D. Christian ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3242
Author(s):  
Hamid Mirshekali ◽  
Rahman Dashti ◽  
Karsten Handrup ◽  
Hamid Reza Shaker

Distribution networks transmit electrical energy from an upstream network to customers. Undesirable circumstances such as faults in the distribution networks can cause hazardous conditions, equipment failure, and power outages. Therefore, to avoid financial loss, to maintain customer satisfaction, and network reliability, it is vital to restore the network as fast as possible. In this paper, a new fault location (FL) algorithm that uses the recorded data of smart meters (SMs) and smart feeder meters (SFMs) to locate the actual point of fault, is introduced. The method does not require high-resolution measurements, which is among the main advantages of the method. An impedance-based technique is utilized to detect all possible FL candidates in the distribution network. After the fault occurrence, the protection relay sends a signal to all SFMs, to collect the recorded active power of all connected lines after the fault. The higher value of active power represents the real faulty section due to the high-fault current. The effectiveness of the proposed method was investigated on an IEEE 11-node test feeder in MATLAB SIMULINK 2020b, under several situations, such as different fault resistances, distances, inception angles, and types. In some cases, the algorithm found two or three candidates for FL. In these cases, the section estimation helped to identify the real fault among all candidates. Section estimation method performs well for all simulated cases. The results showed that the proposed method was accurate and was able to precisely detect the real faulty section. To experimentally evaluate the proposed method’s powerfulness, a laboratory test and its simulation were carried out. The algorithm was precisely able to distinguish the real faulty section among all candidates in the experiment. The results revealed the robustness and effectiveness of the proposed method.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Sign in / Sign up

Export Citation Format

Share Document