scholarly journals Research on Distribution Network Reliability Investment Estimation Method Based on Sequence Linearization Correlation Analysis

2021 ◽  
Author(s):  
Huazhen Cao ◽  
Chong Gao ◽  
Yaxiong Wu ◽  
Hao Li ◽  
Zijun Wang ◽  
...  

This paper presents an estimation method of distribution network reliability planning Investment Based on sequence linearization correlation analysis. Firstly, the planning business index closely related to reliability are selected, and the control objectives of reliability index are decomposed into the promotion objectives of each planning business index through sequence linearization correlation analysis. Then, the typical engineering construction scenarios corresponding to each planning business index are constructed, and the investment required to achieve the corresponding promotion objectives of business index is estimated according to the typical scenarios, Finally, the total investment of reliability planning is obtained. The example shows that the method can be applied to the actual distribution network with complex grid conditions and various planning schemes, and can provide powerful guidance for power supply enterprises to improve the efficiency of capital use

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3242
Author(s):  
Hamid Mirshekali ◽  
Rahman Dashti ◽  
Karsten Handrup ◽  
Hamid Reza Shaker

Distribution networks transmit electrical energy from an upstream network to customers. Undesirable circumstances such as faults in the distribution networks can cause hazardous conditions, equipment failure, and power outages. Therefore, to avoid financial loss, to maintain customer satisfaction, and network reliability, it is vital to restore the network as fast as possible. In this paper, a new fault location (FL) algorithm that uses the recorded data of smart meters (SMs) and smart feeder meters (SFMs) to locate the actual point of fault, is introduced. The method does not require high-resolution measurements, which is among the main advantages of the method. An impedance-based technique is utilized to detect all possible FL candidates in the distribution network. After the fault occurrence, the protection relay sends a signal to all SFMs, to collect the recorded active power of all connected lines after the fault. The higher value of active power represents the real faulty section due to the high-fault current. The effectiveness of the proposed method was investigated on an IEEE 11-node test feeder in MATLAB SIMULINK 2020b, under several situations, such as different fault resistances, distances, inception angles, and types. In some cases, the algorithm found two or three candidates for FL. In these cases, the section estimation helped to identify the real fault among all candidates. Section estimation method performs well for all simulated cases. The results showed that the proposed method was accurate and was able to precisely detect the real faulty section. To experimentally evaluate the proposed method’s powerfulness, a laboratory test and its simulation were carried out. The algorithm was precisely able to distinguish the real faulty section among all candidates in the experiment. The results revealed the robustness and effectiveness of the proposed method.


Energetika ◽  
2015 ◽  
Vol 61 (1) ◽  
Author(s):  
Aleksandrs Ļvovs ◽  
Ilze Priedite

The increasing number of severe weather occurrences that influence the number of large scale outages, especially in rural distribution networks, makes the question on the need of increasing reliability level of power supply of the distribution network even more actual. Distribution system operators and national regulators shall not only find a reliable but also a cost-effective solution for further distribution network development: the optimal reliability level of power supply. One of the reliability improvement solutions that allows effectively dealing with the reduction of the number of outages in rural distribution networks is the cablification of network. Construction costs of the aforementioned solution are quite high in comparison to other network line types, and due to that, the implementation of the solution always raises discussions on cost-effectiveness. The paper presents approaches for the cost/worth assessment of power line lifetime costs in the distribution network and for the assessment of customer costs of reliability that takes into account time-varying loads and outage costs (previously developed by authors of this paper [6, 7]) as well as for the assessment of traders’ losses due to electrical energy not supplied. The case study included in the paper is performed for Latvian conditions and takes into account information on the real customer costs of reliability of Latvian customers (information from the study of the Institute of Physical Energetics), fault statistics of Latvian underground cables and overhead lines, information with a high level of details on the capital costs, operational and fault elimination costs of distribution lines in Latvia.


2020 ◽  
Vol 35 (4) ◽  
pp. 2109-2112
Author(s):  
Yue Xiang ◽  
Yunche Su ◽  
Yang Wang ◽  
Junyong Liu ◽  
Xin Zhang

2013 ◽  
Vol 448-453 ◽  
pp. 2503-2506
Author(s):  
Xin Zhang ◽  
Hong Liu ◽  
Li Mei Zhou

The access of distributed renewable energy enhances the uncertainty of the distribution network reliability, whereas the distribution network reliability evaluation using existing methods cannot fully reflect the stochastic volatility of islanding power supply and loads. For this reason the approach of active distribution network probabilistic reliability evaluation based on point estimation method was proposed. In the framework of Monte Carlo simulation, the islanding random variable was sampled and processed firstly; then the islanding probabilistic reliability was assessed with a nonlinear transformation method of independent random variables based on point estimate method; finally, system probabilistic reliability indexes can be obtained from the probabilistic superimposing of the results of repeating simulated failures. The simulation on the transformed multi-branch feeder model of the IEEE RBTS Bus6 verifies the validity and accuracy of this assessment approach.


2013 ◽  
Vol 341-342 ◽  
pp. 1380-1383
Author(s):  
Yan Yan Cui ◽  
Da Pu Zhao ◽  
Wei Liu ◽  
Yu Long

It is difficult to evaluate and analyze power supply reliability of large-scale medium voltage distribution network by detailed modeling method. The paper proposes a power supply reliability evaluation method of large-scale medium voltage distribution network, which is based on the network reliability characteristics model. Lines with similar structural characteristics are designated as one model. The reliability index of each mode can be represented by the typical lines. The assessment principle, process and the advantages of this method are elaborated. The medium voltage distribution network of Nanjing area is taken as an example to evaluate power supply reliability. And the results are compared with historical statistics. The result shows that the method can greatly reduce the workload and has high accuracy. It can be used to evaluate the reliability of large-scale medium voltage distribution network.


Sign in / Sign up

Export Citation Format

Share Document