scholarly journals Combined Application of SRS and Photoacoustic Imaging in Vivo Leaf Tissue in Situ Detection System

Author(s):  
Hong-peng Wang ◽  
Ru-jun Yuan ◽  
Xiong Wan
2018 ◽  
Vol 232 ◽  
pp. 04053
Author(s):  
Cheng-xing Miao ◽  
Qing Li ◽  
Sheng-yao Jia

In order to get ridded of the non real-time detection methods of artificial site sampled and laboratory instrument analyzed in the field of methane detection in the offshore shallow gas, real-time in-situ detection system for methane in offshore shallow gas was designed by the film interface.The methane in the offshore shallow gas through the gas-liquid separation membrane of polymer permeation into the system internal detection probe, analog infrared micro gas sensor sensed the methane concentration and the corresponded output value, data acquisition and communication node fitted into standard gas concentration.Based on the experimental data compared with the traditional detection method, and further analyzed the causes of error produced by the case experiment. The application results show that the system can achieve a single borehole layout, long-term on-line in-situ on-line detection, and improve the detection efficiency and the timeliness of the detection data.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7651-7659 ◽  
Author(s):  
Xujuan Guo ◽  
Bing Cao ◽  
Congyu Wang ◽  
Siyu Lu ◽  
Xianglong Hu

Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are in situ developed for efficient elimination of MRSA infection, which is reflected by dual-modality magnetic resonance and photoacoustic imaging.


2000 ◽  
Vol 31 (1) ◽  
pp. 58-59 ◽  
Author(s):  
J. H. Sur ◽  
A. R. Doster ◽  
J. Galeota ◽  
R. W. Wills ◽  
F. A. Osorio

2008 ◽  
Vol 1129 ◽  
Author(s):  
S. Huang ◽  
S. Li ◽  
H. Yang ◽  
M. L. Johnson ◽  
Ramji S Lakshmanan ◽  
...  

AbstractThis paper presents a multiple magnetoelastic (ME) biosensor system for in-situ detection of S. typhimurium and B. anthracis spores in a flowing bacterial/spore suspension (5 x 101 - 5 x 108 cfu/ml). The ME biosensor was formed by immobilizing filamentous phage (specific to each detection target) on the ME platforms. An alternating magnetic field was used to resonate the ME biosensor to determine its resonance frequency. When cells/spores are bound to a ME biosensor surface, the additional mass of the cells/spores causes a decrease in the resonance frequency of the biosensor. The detection system was composed of a control sensor, an E2 phage-based biosensor (specific to S. typhimurium) and a JRB7 phage-based biosensor (specific to B. anthracis spores). The frequency response curves of the ME biosensors as a function of exposure time were then measured and the detection limit of the ME biosensor was observed to be 5 x 103 cfu/ml. The results show that phage-based ME biosensors can detect multiple pathogens simultaneously and offer good performance, including good sensitivity and rapid detection.


1991 ◽  
Vol 39 (7) ◽  
pp. 987-992 ◽  
Author(s):  
K Gerritse ◽  
M Fasbender ◽  
W Boersma ◽  
E Claassen

We report here a new method to produce synthetic peptide/alkaline phosphatase (AP) conjugates in the presence of urea. The method allows the use of peptides that are not soluble to a sufficient degree in aqueous buffers. The presence of 8 M urea during the construction of the synthetic peptide/AP conjugates does not influence enzyme activity nor the affinity of the anti-peptide antibodies for the conjugated peptide. We demonstrate that these synthetic peptide/AP conjugates can be used for detection of specific antipeptide antibody-forming cells (AFC) in vivo. This method for constructing enzyme conjugates with insoluble proteins or peptides suggest not only new possibilities for detection of specific AFC in vivo but also for applications in receptor-ligand studies, ELISA (enzyme-linked immunosorbent assay), and spot ELISA for detection of antibody-secreting cells in vitro.


Nano Research ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 1043-1056 ◽  
Author(s):  
Chenchen Bao ◽  
João Conde ◽  
Fei Pan ◽  
Chao Li ◽  
Chunlei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document