scholarly journals Mechanism and Design of Hanging Assembled Supporting Structure in the Roadway

Author(s):  
Xiantang Zhang ◽  
Yi Bai ◽  
Hongmin Zhou ◽  
Hongli Wang
Keyword(s):  

Author(s):  
P.H. McLaughlin

A shelved structure for the support of an electron optical column affords advantages both to the designer and the user. A lens may be removed for cleaning for example, without demounting the remaining lenses. A custom device for another example, may be placed on a shelf, substituting for the standard lens perhaps so that some specialized research may be undertaken. Especially advantageous is a shelved arrangement if the column assembly is designed to hang from a supporting structure such as a gas borne floating platform, as is the case with the system described below.As shown on the schematic, a floating platform (I) supports the electron source apparatus (2) and a U-shaped column support shelf (3). The column support shelf acts as a key for locating and supporting three struts (4) which with nuts (5) support the condenser shelf (6), the objective shelf (7), the upper projector shelf (8), and the lower projector shelf (9).



The sun oriented power (SP) is a one of a kind renewable vitality innovation. SP frameworks can give control, water warming and water decontamination in one unit. This innovation will be to a great degree accommodating in enhancing the personal satisfaction for some individuals around the globe who do not have the vitality expected to carry on with a sound life. A financial allegorical dish sort Cassegrain concentrating framework was created at the foundation of Energy Studies, Anna University Chennai. An old microwave media transmission reception apparatus having a paraboloidal shape made in aluminum frames an essential reflector which guarantees effortlessness of generation and operation. The essential concentrator was settled with mirror cleaned stainless steel with reasonable cement .The optional concentrator is inward mirror .Suitable supporting structure was developed for supporting the cassegrain concentrator. Double hub following framework is mounted for adjusting the concentrator to azimuth and apex point by utilizing DC engine and direct actuator individually. Water goes about as working liquid to expel warm from .The tank is protected with thermocol material upheld with wooden structure on all sides to maintain a strategic distance from convection misfortunes. The material Cost for the framework was Rs 15000





2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;





Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2998
Author(s):  
Xinyong Zhang ◽  
Liwei Sun

Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures.



2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.



1973 ◽  
Vol 15 (3) ◽  
pp. 225-231
Author(s):  
L. Maunder

Flexibility in the supporting structure of two-axis or single-axis gyroscopes is shown to have a radical effect on vibrational characteristics. The analysis determines the ensuing natural frequencies and critical speeds.



Sign in / Sign up

Export Citation Format

Share Document