scholarly journals Research on the Gauge-Invariant Energy Density of Similar Electromagnetic Properties of Gravitational Field

Author(s):  
Benchao Zhu ◽  
Weiwei Jiang ◽  
Fan Zhang
1995 ◽  
Vol 10 (12) ◽  
pp. 1821-1844
Author(s):  
CHRISTOPHE M. MASSACAND

We compute the energy density and pressures due to the quantum production of particles of a scalar field. This scalar field propagates in the external gravitational field of a (3+1)-dimensional, spherically symmetric, static geometry with flat spatial sections. We assume that the gravitational potential is weak, and we work to the first order in the strength of this potential. We consider only the l=0 sector of the scalar field. Our method for computing the energy density is based on the gauge-invariant definition of particles and normal ordering with respect to the energy measurable on a hypersurface with no extrinsic curvature. The initial state of the quantum field is the gauge-invariant vacuum on one of these hypersurfaces. Our computations are finite step by step. For the pressures we use the covariant conservation of Tμν and its four-dimensional trace. We apply our results to the gravitational potential of a homogeneous spherical body. At late times, i.e. when all switch-on effects are far away from the body, the result is that a static, gravitational vacuum polarization cloud of energy and pressure is formed inside and outside the body.


1950 ◽  
Vol 18 (4) ◽  
pp. 237-237
Author(s):  
Julius Sumner Miller

1978 ◽  
Vol 56 (6) ◽  
pp. 801-805 ◽  
Author(s):  
G. Papini ◽  
S. R. Valluri

The cross section for the photoproduction of gravitons in magnetic dipole fields which are due to steady currents is calculated. The approach and the results are compared with the previously studied case in which no currents exist and the potential is represented by a scalar. The calculations in both cases are completely covariant and electromagnetically gauge invariant. The radiative corrections to order [Formula: see text] and [Formula: see text] in the nonrelativistic and relativistic limits are also calculated for dipole and Coulomb fields, respectively. Their evaluation is particularly simple in the transverse traceless gauge for the gravitational field.


1951 ◽  
Vol 19 (1) ◽  
pp. 63-64
Author(s):  
John A. Eldridge

2009 ◽  
Vol 24 (08n09) ◽  
pp. 1545-1548 ◽  
Author(s):  
M. D. MAIA ◽  
A. J. S. CAPISTRANO ◽  
E. M. MONTE

General relativity postulates the Minkowski space-time as the standard (flat) geometry against which we compare all curved space-times and also as the gravitational ground state where particles, quantum fields and their vacua are defined. On the other hand, experimental evidences tell that there exists a non-zero cosmological constant, which implies in a deSitter ground state, which not compatible with the assumed Minkowski structure. Such inconsistency is an evidence of the missing standard of curvature in Riemann's geometry, which in general relativity manifests itself in the form of the cosmological constant problem. We show how the lack of a curvature standard in Riemann's geometry can be fixed by Nash's theorem on metric perturbations. The resulting higher dimensional gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity represents a gravitational term which is not confined. In this case, the comparison between the vacuum energy and the cosmological constant in general relativity does not make sense. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.


1988 ◽  
Vol 03 (15) ◽  
pp. 1425-1429 ◽  
Author(s):  
VARUN SAHNI

The creation of particles by a nonstationary gravitational field during the formation of a straight, static cosmic string has been investigated and the contribution to the number density of created particles from modes with the lowest angular quantum number assessed. It is found that for GUT scale strings the energy density of created particles is many orders of magnitude smaller than the corresponding energy density of radiation at GUT times.


This paper concerns itself with the possibility of thermal equilibrium between a black hole and a heat bath implied by Hawking’s discovery of black hole emission. We argue that in an isolated box of radiation, for sufficiently high energy density a black hole will condense out. We introduce thermal Green functions to discuss this equilibrium and are able to extend the original arguments, that the equilibrium is possible based on fields interacting solely with the external gravitational field, to the case when mutual and self interactions are included.


Sign in / Sign up

Export Citation Format

Share Document