scholarly journals Cmm-based Profile Measuring Method for Unknown Screw Compressor Rotor

Author(s):  
Xiaogang Ji ◽  
Nan Li
2014 ◽  
Vol 658 ◽  
pp. 123-128 ◽  
Author(s):  
Camelia Lacramioara Popa ◽  
Viorel Popa

Helical rotors, components of screw compressors have different structural shapes: rotors circular front section, rotors elliptic front section or asymmetric rotors. Manufacturing rotors involves profiling a tool bordered by a revolution surface, enveloping of each helical channel. This paper proposes a method developed in AutoCAD, in order to determine the profile of end mill cutter which generates the helical channel. Graphic method is based on the principle of complementary theorems' "Substitute Circles Family Method" component of envelope surfaces theory.


2013 ◽  
Vol 774-776 ◽  
pp. 1107-1111
Author(s):  
Yong Qiang Zhao ◽  
Sheng Dun Zhao ◽  
Hong Ling Hou

With the accuracy improvement of twin-screw compressor rotor machining, higher requirement of crew rotor grinded equipment and grinding process is put forward. Based the theory of screw grinding and CNC forming grinding wheel dress technology, the relationship between machine working parameters, CNC grinding wheel dressing parameters and screw rotor grinded process parameters are investigated, and the relationship between CNC grinding wheel dressing parameters and the screw rotor grinded process parameters is established, and its formulas are presented to describe the distances between grinding wheel axis and screw rotor axis. Through these formulas, the CNC wheel dressing program could be designed easily, the performance and efficiency of machine would be improved, and especially the machining quality of screw rotor would be enhanced and becomes more stability.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Weifeng Wu ◽  
Quanke Feng ◽  
Xiaoling Yu

Cylindrical milling of a screw rotor groove in a single screw compressor has higher machining efficiency than turning. However, the screw groove bottom produced by the flat end of the milling cutter fails to mesh hermetically with the flat tooth tip due to the oversized clearance between them. The clearance forms two leakage paths leading to a compressed gas leakage. The shape of the path is roughly the same as that of two parallel oblate divergent nozzles in an inverse orientation. A mathematical simulation is presented for the surface profile of the screw groove bottom for a single screw compressor generated using several cylindrical milling cutters. The results contribute to improving the design of the meshing pairs in the single screw compressor.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6970
Author(s):  
Huagen Wu ◽  
Jiankang Liu ◽  
Yuqi Shen ◽  
Mengtao Liang ◽  
Beiyu Zhang

Twin-screw compressors are widely used in aerodynamics, refrigeration and other fields. The screw rotors are the core component of the screw compressor and affect the performance of the compressor. This paper focuses on variable-lead rotors. A thermal process simulation model considering leakage is established to calculate the efficiency of the compressor. Different lead change methods are compared by evaluating the contact line, exhaust port and simulation results. The results show that the compressor obtains better performance when the lead decreases rapidly on the discharge side. Furthermore, the effects of the wrap angle and internal volume ratio on variable-lead rotors are studied. The work provides a reference for the design of the screw compressor rotor.


Author(s):  
Jian Yang ◽  
Fang-Hong Sun ◽  
Zheng Lu

As a complex grinding wheel for special use, the screw compressor rotor-forming grinding wheel needs to be designed according to the specific profile of the workpiece. The design process is complicated and difficult to grasp, and various design issues are likely to occur. This study is based on the design theory of helical rotor-forming grinding wheels. Here, disc-shaped forming grinding wheels for machining a helical surface were studied, with discrete point workpiece cross-sections as examples. MATLAB was used as the development tool, and the Unigraphics motion simulation function was applied to establish a 3D model of screw rotors and design the forming grinding wheel for machining the helical surface. Additionally, the edge shape of the grinding wheel obtained with the analytical method and the edge shape obtained with the edge detection method based on the graphic method and the alpha-shape algorithm were compared. The results of this comparison show that the edge shape of the grinding wheel obtained by the edge detection method had high precision and was easy to solve. This method can also be used for the design of other similar conjugated products such as gears, worms, and grinding wheels. The research findings provide important reference value for the design and machining of screw rotors and grinding wheels.


Sign in / Sign up

Export Citation Format

Share Document