scholarly journals Application of State-Space Model to Exact Time Series Forecasting

Author(s):  
Changjiang Zheng ◽  
Yujin Dong ◽  
Youxiang Cui ◽  
Fuji Xie
Author(s):  
Longyuan Li ◽  
Junchi Yan ◽  
Xiaokang Yang ◽  
Yaohui Jin

Probabilistic time series forecasting involves estimating the distribution of future based on its history, which is essential for risk management in downstream decision-making. We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks and the dependency is modeled by recurrent neural nets. We take the automatic relevance determination (ARD) view and devise a network to exploit the exogenous variables in addition to time series. In particular, our ARD network can incorporate the uncertainty of the exogenous variables and eventually helps identify useful exogenous variables and suppress those irrelevant for forecasting. The distribution of multi-step ahead forecasts are approximated by Monte Carlo simulation. We show in experiments that our model produces accurate and sharp probabilistic forecasts. The estimated uncertainty of our forecasting also realistically increases over time, in a spontaneous manner.


2013 ◽  
Vol 292 ◽  
pp. 64-74 ◽  
Author(s):  
Katalin Csilléry ◽  
Maëlle Seignobosc ◽  
Valentine Lafond ◽  
Georges Kunstler ◽  
Benoît Courbaud

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


2010 ◽  
Vol 49 (4) ◽  
pp. 676-686 ◽  
Author(s):  
Toshiaki Kozu ◽  
Kazuhiro Masuzawa ◽  
Toyoshi Shimomai ◽  
Nobuhisa Kashiwagi

Abstract An automatic estimation method is developed to detect stepwise changes in the amplitude parameter of the normalized raindrop size distribution (DSD) N*0. To estimate N*0, it is also assumed that the variation of three DSD parameters follows the two-scale gamma DSD model; this is defined as a DSD model in which one DSD parameter is fixed, the second is allowed to vary rapidly, and the third is constant over a certain space or time domain and sometimes exhibits stepwise transitions. For this study, it is assumed that N*0 is the third DSD parameter. To estimate this stepwise-varying parameter automatically, a non-Gaussian state-space model is used for the time series of log10N*0. The smoothed time series of log10N*0 fit well to the stepwise transition of log10N*0 when it was assumed that the state transition probability follows a Cauchy distribution. By analyzing the long-term disdrometer data using this state-space model, statistical properties for log10N*0 are obtained at several Asian locations. It is confirmed that the N*0 thus estimated is useful to improve the rain-rate estimation from the measurement of radar reflectivity factor.


Sign in / Sign up

Export Citation Format

Share Document