scholarly journals New Technique for Solving Autonomous Equations

2019 ◽  
Vol 32 (2) ◽  
pp. 123
Author(s):  
Enadi M. O. ◽  
Tawfiq L.N. M.

This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition.  This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.  

2010 ◽  
Vol 65 (1-2) ◽  
pp. 65-70
Author(s):  
Changbum Chun

AbstractIn this paper, we present an efficient modification of the homotopy perturbation method by using Chebyshev’s polynomials and He’s polynomials to solve some nonlinear differential equations. Some illustrative examples are given to demonstrate the efficiency and reliability of the modified homotopy perturbation method.


2019 ◽  
Vol 3 (2) ◽  
pp. 30 ◽  
Author(s):  
Dumitru Baleanu ◽  
Hassan Kamil Jassim

In this paper, we apply a new technique, namely, the local fractional Laplace homotopy perturbation method (LFLHPM), on Helmholtz and coupled Helmholtz equations to obtain analytical approximate solutions. The iteration procedure is based on local fractional derivative operators (LFDOs). This method is a combination of the local fractional Laplace transform (LFLT) and the homotopy perturbation method (HPM). The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.


2020 ◽  
Vol 9 (1) ◽  
pp. 370-381
Author(s):  
Dinkar Sharma ◽  
Gurpinder Singh Samra ◽  
Prince Singh

AbstractIn this paper, homotopy perturbation sumudu transform method (HPSTM) is proposed to solve fractional attractor one-dimensional Keller-Segel equations. The HPSTM is a combined form of homotopy perturbation method (HPM) and sumudu transform using He’s polynomials. The result shows that the HPSTM is very efficient and simple technique for solving nonlinear partial differential equations. Test examples are considered to illustrate the present scheme.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nehad Ali Shah ◽  
Essam R. El-Zahar ◽  
Mona D. Aljoufi ◽  
Jae Dong Chung

AbstractIn this article, a hybrid technique called the homotopy perturbation Elzaki transform method has been implemented to solve fractional-order Helmholtz equations. In the hybrid technique, the Elzaki transform method and the homotopy perturbation method are amalgamated. Three problems are solved to validate and demonstrate the efficacy of the present technique. It is also demonstrated that the results obtained from the suggested technique are in excellent agreement with the results by other techniques. It is shown that the proposed method is efficient, reliable and easy to implement for various related problems of science and engineering.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050058 ◽  
Author(s):  
KANG-LE WANG ◽  
SHAO-WEN Yao ◽  
YAN-PING LIU ◽  
LI-NA ZHANG

A fractal modification of the telegraph equation with fractal derivatives is given, and its variational principle is established by the semi-inverse method. The two-scale transform method and He’s homotopy perturbation method are successfully adopted to solve the fractal equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Yu Du Han ◽  
Jae Heon Yun

We first propose a restarted homotopy perturbation method (RHPM) for solving a nonlinear PDE problem which repeats HPM process by computing only the first few terms instead of computing infinite terms, and then we present an application of RHPM to TV- (Total Variation-) based image denoising problem. The main difficulty in applying RHPM to the nonlinear denoising problem is settled by using binomial series techniques. We also provide finite difference schemes for numerical implementation of RHPM. Lastly, numerical experiments for several test images are carried out to demonstrate the feasibility, efficiency, and reliability of RHPM by comparing the performance of RHPM with that of existing TM and recently proposed RHAM methods.


2006 ◽  
Vol 20 (18) ◽  
pp. 2561-2568 ◽  
Author(s):  
JI-HUAN HE

The present work constitutes a guided tour through the mathematics needed for a proper understanding of homotopy perturbation method as applied to various nonlinear problems. It gives a new interpretation of the concept of constant expansion in the homotopy perturbation method.


Sign in / Sign up

Export Citation Format

Share Document