scholarly journals DESAIN NOSEL ROKET CAIR RCX250 MENGGUNAKAN METODE PARABOLIK DENGAN MODIFIKASI SUDUT EKSPANSI

2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Eko Priamadi ◽  
Arif Nur Hakim ◽  
Romie O. Bura

 The present research is conducted to design the optimum nozzles for RCX250 engine, that is designed to produce maximum thrust of 250 kgf with combination of LOX and Kerosene as its propellant. The new nozzles were determined to be parabolic nozzle, with conical nozzle as its comparison. The parabolic nozzle was designed using Thrust Optimized Parabolic (TOP) method invented by G.V.R.Rao. TOP nozzle design method is performed by approximating a Thrust Optimized Contoured (TOC) Nozzle using parabolic equation. The method would result more efficient nozzle than conical or ideal bell nozzle. Further, the parabolic nozzle were modified in its initial and exit angle to create uniform velocities distribution at nozzle exit. A Computational Fluid Dynamics Method (CFD) is used to simulate the nozzle designs. The simulation was carried out in axis-symmetric condition using commercial CFD software. The simulation results show that MOD 1 nozzle, with initial angle (θN) 26 deg and exit angle (θe) 12 deg, gives maximum thrust, which is 4.67 % higher than reference conical nozzle. Key words:Liquid rocket, Parabolic nozzle, Thrust, CFD

2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Di Zhu ◽  
Ran Tao ◽  
Ruofu Xiao

Mixed-flow pumps compromise large flow rate and high head in fluid transferring. Long-axis mixed-flow pumps with radial–axial “spacing” guide vanes are usually installed deeply under water and suffer strong cavitation due to strong environmental pressure drops. In this case, a strategy combining the Diffusion-Angle Integral Design method, the Genetic Algorithm, and the Computational Fluid Dynamics method was used for optimizing the mixed-flow pump impeller. The Diffusion-Angle Integral Design method was used to parameterize the leading-edge geometry. The Genetic Algorithm was used to search for the optimal sample. The Computational Fluid Dynamics method was used for predicting the cavitation performance and head–efficiency performance of all the samples. The optimization designs quickly converged and got an optimal sample. This had an increased value for the minimum pressure coefficient, especially under off-design conditions. The sudden pressure drop around the leading-edge was weakened. The cavitation performance within the 0.5–1.2 Qd flow rate range, especially within the 0.62–0.78 Qd and 1.08–1.20 Qd ranges, was improved. The head and hydraulic efficiency was numerically checked without obvious change. This provided a good reference for optimizing the cavitation or other performances of bladed pumps.


2016 ◽  
Vol 823 ◽  
pp. 315-318
Author(s):  
Mahran Dawwa

The aim of this study is to simulate the combustion process in the combustion chamber of diesel engines by using eddy dissipation model (EDM) and computational fluid dynamics method (CFD). Computational fluid dynamics has been used wieldy in the recent years for simulating the strokes of diesel engines including the combustion process. Eddy dissipation model can be used for simulating non-premixed combustion cases such as the combustion in diesel engines. The simulation steps and the simulation results will be discussed and illustrated. ANSYS program is the software which used for performing this simulation.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


2021 ◽  
Vol 159 ◽  
pp. 106990
Author(s):  
Wanfu Zhang ◽  
Kexin Wu ◽  
Chengjing Gu ◽  
Haoyang Tian ◽  
Xiaobin Zhang ◽  
...  

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ling Zhou ◽  
Lingjie Zhang ◽  
Weidong Shi ◽  
Ramesh Agarwal ◽  
Wei Li

A coupled computational fluid dynamics (CFD)/discrete element method (DEM) is used to simulate the gas–solid two-phase flow in a laboratory-scale spouted fluidized bed. Transient experimental results in the spouted fluidized bed are obtained in a special test rig using the high-speed imaging technique. The computational domain of the quasi-three-dimensional (3D) spouted fluidized bed is simulated using the commercial CFD flow solver ANSYS-fluent. Hydrodynamic flow field is computed by solving the incompressible continuity and Navier–Stokes equations, while the motion of the solid particles is modeled by the Newtonian equations of motion. Thus, an Eulerian–Lagrangian approach is used to couple the hydrodynamics with the particle dynamics. The bed height, bubble shape, and static pressure are compared between the simulation and the experiment. At the initial stage of fluidization, the simulation results are in a very good agreement with the experimental results; the bed height and the bubble shape are almost identical. However, the bubble diameter and the height of the bed are slightly smaller than in the experimental measurements near the stage of bubble breakup. The simulation results with their experimental validation demonstrate that the CFD/DEM coupled method can be successfully used to simulate the transient gas–solid flow behavior in a fluidized bed which is not possible to simulate accurately using the granular approach of purely Euler simulation. This work should help in gaining deeper insight into the spouted fluidized bed behavior to determine best practices for further modeling and design of the industrial scale fluidized beds.


2010 ◽  
Vol 37-38 ◽  
pp. 739-742
Author(s):  
Gao Chun Xu ◽  
Qing Xi Hu ◽  
Li Min Li ◽  
Chun Xiang Dai

Based on control equations in fluid dynamics, the main thought of oil mist process for cold heading machine is proposed according to the idea of green manufacturing. The computation fluid dynamics (CFD) software is applied to simulate the multi-phase oil mist flow in control box. The simulation results give some figures including distribution and stream line path of multi-phase flow of oil mist in the control box. The results show that the inlet position of oil mist effects on its process and three types of control box are compared, from which the best type is obtained.


Sign in / Sign up

Export Citation Format

Share Document