scholarly journals Using the CVP Traffic Detection Model at Road-Section Applies to Traffic Information Collection and Monitor - the Case Study

2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Shing Tenqchen ◽  
Yen-Jung Su ◽  
Keng-Pin Chen

This paper proposes a using Cellular-Based Vehicle Probe (CVP) at road-section (RS) method to detect and setup a model for traffic flow information (info) collection and monitor. There are multiple traffic collection devices including CVP, ETC-Based Vehicle Probe (EVP), Vehicle Detector (VD), and CCTV as traffic resources to serve as road condition info for predicting the traffic jam problem, monitor and control. The main project has been applied at Tai # 2 Ghee-Jing roadway connects to Wan-Li section as a trial field on fiscal year of 2017-2018. This paper proposes a man-flow turning into traffic-flow with Long-Short Time Memory (LTSM) from recurrent neural network (RNN) model. We also provide a model verification and validation methodology with RNN for cross verification of system performance.

2014 ◽  
Vol 536-537 ◽  
pp. 828-832
Author(s):  
Chao Chao Liu ◽  
Yan Ping Liang ◽  
Xiao Li Zhang

According to the characteristics and existing problem of the stationary and moving traffic flow information collection technology, this paper proposes the traffic information detection’s new ideas and methods based on satellite images, this paper systematically analysis and summarized the traffic flow information collection technology for the vehicle queues, single vehicle targets and moving vehicles at home and abroad based on satellite remote sensing image, and points out the research emphasis in future.


Author(s):  
Zhenghong Peng ◽  
Guikai Bai ◽  
Hao Wu ◽  
Lingbo Liu ◽  
Yang Yu

Obtaining the time and space features of the travel of urban residents can facilitate urban traffic optimization and urban planning. As traditional methods often have limited sample coverage and lack timeliness, the application of big data such as mobile phone data in urban studies makes it possible to rapidly acquire the features of residents’ travel. However, few studies have attempted to use them to recognize the travel modes of residents. Based on mobile phone call detail records and the Web MapAPI, the present study proposes a method to recognize the travel mode of urban residents. The main processes include: (a) using DBSCAN clustering to analyze each user’s important location points and identify their main travel trajectories; (b) using an online map API to analyze user’s means of travel; (c) comparing the two to recognize the travel mode of residents. Applying this method in a GIS platform can further help obtain the traffic flow of various means, such as walking, driving, and public transit, on different roads during peak hours on weekdays. Results are cross-checked with other data sources and are proven effective. Besides recognizing travel modes of residents, the proposed method can also be applied for studies such as travel costs, housing–job balance, and road traffic pressure. The study acquires about 6 million residents’ travel modes, working place and residence information, and analyzes the means of travel and traffic flow in the commuting of 3 million residents using the proposed method. The findings not only provide new ideas for the collection and application of urban traffic information, but also provide data support for urban planning and traffic management.


2019 ◽  
Vol 29 (2) ◽  
pp. 213-225 ◽  
Author(s):  
Ben-Jye Chang ◽  
Ren-Hung Hwang ◽  
Yueh-Lin Tsai ◽  
Bo-Han Yu ◽  
Ying-Hsin Liang

Abstract Cooperative adaptive cruise control (CACC) for human and autonomous self-driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is encountered while exhibiting asynchronous brakes that easily lead to backward shock-waves and are difficult to remove. Several critical issues should be addressed in CACC, including (i) difficulties with adaptive steering of the inter-vehicle distances among neighbor vehicles and the vehicle speed, (ii) the butterfly effect, (iii) unstable vehicle traffic flow, etc. To address the above issues in CACC, this paper proposes the mobile edge computing-based vehicular cloud of the cooperative adaptive driving (CAD) approach to avoid shock-waves efficiently in platoon driving. Numerical results demonstrate that the CAD approach outperforms the compared techniques in the number of shock-waves, average vehicle velocity, average travel time and time to collision (TTC). Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.


Author(s):  
Andrew D. Atkinson ◽  
Raymond R. Hill ◽  
Joseph J. Pignatiello ◽  
G. Geoffrey Vining ◽  
Edward D. White ◽  
...  

Model verification and validation (V&V) remain a critical step in the simulation model development process. A model requires verification to ensure that it has been correctly transitioned from a conceptual form to a computerized form. A model also requires validation to substantiate the accurate representation of the system it is meant to simulate. Validation assessments are complex when the system and model both generate high-dimensional functional output. To handle this complexity, this paper reviews several wavelet-based approaches for assessing models of this type and introduces a new concept for highlighting the areas of contrast and congruity between system and model data. This concept identifies individual wavelet coefficients that correspond to the areas of discrepancy between the system and model.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Haji Said Fimbombaya ◽  
Nerey H. Mvungi ◽  
Ndyetabura Y. Hamisi ◽  
Hashimu U. Iddi

Traffic flow monitoring involves the capturing and dissemination of real-time traffic flow information for a road network. When a vehicle, a ferromagnetic object, travels along a road, it disturbs the ambient Earth’s magnetic field, causing its distortion. The resulting distortion carries vehicle signature containing traffic flow related information such as speed, count, direction, and classification. To extract such information in chaotic cities, a novel algorithm based on the resulting magnetic field distortion was developed using nonintrusive sensor localization. The algorithm extracts traffic flow information from resulting magnetic field distortions sensed by magnetic wireless sensor nodes located on the sides of the road. The model magnetic wireless sensor networks algorithm for local Earth’s magnetic field performance was evaluated through simulation using Dar es Salaam City traffic flow conditions. Simulation results for vehicular detection and count showed 93% and 87% success rates during normal and congested traffic states, respectively. Travel Time Index (TTI) was used as a congestion indicator, where different levels of congestion were evaluated depending on the traffic state with a performance of 87% and 88% success rates during normal and congested traffic flow, respectively.


2006 ◽  
Vol 07 (01) ◽  
pp. 63-73 ◽  
Author(s):  
WEIZHEN GU ◽  
D. FRANK HSU ◽  
XINGDE JIA

Live traffic flow information can help improve the efficiency of a communication network. There are many ways available to monitor the traffic flow of a network. In this paper, we propose a very efficient monitoring strategy. This strategy not only reduces the number of nodes to be monitored but also determines the complete traffic information of the entire network using the information from the monitored nodes. The strategy is optimal for monitoring a network because it reduces the number of monitored nodes to a minimum. Fast algorithms are also presented in this paper to compute the traffic information for the entire network based on the information collected from the monitored nodes. The monitoring scheme discussed in this paper can be applied to the internet, telecommunication networks, wireless ad hoc networks, large scale multiprocessor computing systems, and other information systems where the transmission of information needs to be monitored.


Sign in / Sign up

Export Citation Format

Share Document