Alpha Power-Kumaraswamy Distribution with An Application on Survival Times of Cancer Patients

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Fatima Ulubekova ◽  
Gamze Ozel

The aim of the study is to obtain the alpha power Kumaraswamy (APK) distribution. Some main statistical properties of the APK distribution are investigated including survival, hazard rate and quantile functions, skewness, kurtosis, order statistics. The hazard rate function of the proposed distribution could be useful to model data sets with bathtub hazard rates. We provide a real data application and show that the APK distribution is better than the other compared distributions fort the right-skewed data sets.

Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 28-45
Author(s):  
Vasili B.V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

In this paper, a new five-parameter distribution is proposed using the functionalities of the Kumaraswamy generalized family of distributions and the features of the power Lomax distribution. It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive its main probability and reliability functions, with a visualization of its modeling behavior by considering different parameter combinations. As prime quality, the corresponding hazard rate function is very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also, decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy measures and order statistics. The second approach is statistical. The maximum likelihood estimates of the parameters are described and a brief simulation study shows their effectiveness. Two real data sets are taken to show how the proposed distribution can be applied concretely; parameter estimates are obtained and fitting comparisons are performed with other well-established Lomax based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best by capturing fine details in the structure of the data considered.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Author(s):  
Nils Lid Hjort ◽  
Emil Aas Stoltenberg

AbstractAalen’s linear hazard rate regression model is a useful and increasingly popular alternative to Cox’ multiplicative hazard rate model. It postulates that an individual has hazard rate function $$h(s)=z_1\alpha _1(s)+\cdots +z_r\alpha _r(s)$$ h ( s ) = z 1 α 1 ( s ) + ⋯ + z r α r ( s ) in terms of his covariate values $$z_1,\ldots ,z_r$$ z 1 , … , z r . These are typically levels of various hazard factors, and may also be time-dependent. The hazard factor functions $$\alpha _j(s)$$ α j ( s ) are the parameters of the model and are estimated from data. This is traditionally accomplished in a fully nonparametric way. This paper develops methodology for estimating the hazard factor functions when some of them are modelled parametrically while the others are left unspecified. Large-sample results are reached inside this partly parametric, partly nonparametric framework, which also enables us to assess the goodness of fit of the model’s parametric components. In addition, these results are used to pinpoint how much precision is gained, using the parametric-nonparametric model, over the standard nonparametric method. A real-data application is included, along with a brief simulation study.


2020 ◽  
Vol 43 (2) ◽  
pp. 285-313
Author(s):  
Mohamed Ali Ahmed

Adding  new  parameters to  classical distributions becomes one  of  the most  important methods  for  increasing distributions flexibility,  especially, in  simulation   studies   and real data sets. In this paper, alpha power  transformation (APT) is used  and  applied  to  the Kumaraswamy (K) distribution and a proposed distribution, so called the alpha power Kumaraswamy (AK) distribution, is presented.  Some important mathematical properties are derived, parameters estimation of the AK distribution using maximum likelihood  method  is considered. A simulation study and  a  real  data   set  are  used  to  illustrate the  flexibility of the  AK distribution compared with other  distributions.


2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1730
Author(s):  
Mohammed M. A. Almazah ◽  
Muqrin A. Almuqrin ◽  
Mohamed. S. Eliwa ◽  
Mahmoud El-Morshedy ◽  
Haitham M. Yousof

In this article, a new flexible probability density function with three parameters is proposed for modeling asymmetric data (positive and negative) with different types of kurtosis (mesokurtic, leptokurtic and platykurtic). Some of its statistical and reliability properties, including hazard rate function, moments, moment generating function, incomplete moments, mean deviations, moment of the residual life, moment of the reversed residual life, and order statistics are derived. Its hazard rate function can be either constant, increasing-constant, decreasing-constant, U shape, upside down shape or upside down-U shape. Seven classical estimation methods are considered to estimate the unknown model parameters. Monte Carlo simulation experiments are performed to compare the performance of the seven different estimation methods. Finally, a distinctive asymmetric real data application is analyzed for illustrating the flexibility of the new model.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1226
Author(s):  
Inmaculada Barranco-Chamorro ◽  
Yuri A. Iriarte ◽  
Yolanda M. Gómez ◽  
Juan M. Astorga ◽  
Héctor W. Gómez

Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.


Sign in / Sign up

Export Citation Format

Share Document