scholarly journals Power Spectrum in the Conductive Terrestrial Ionosphere

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
George Jandieri ◽  
Jaromir Pistora ◽  
Nino Mchedlishvili

Stochastic differential equation of the phase fluctuations is derived for the collision conductive magnetized plasma in the polar ionosphere applying the complex geometrical optics approximation. Calculating second order statistical moments it was shown that the contribution of the longitudinal conductivity substantially exceeds both Pedersen and Hall’s conductivities. Experimentally observing the broadening of the spatial power spectrum of scattered electromagnetic waves which equivalent to the brightness is analyzed for the elongated ionospheric irregularities. It was shown that the broadening of the spectrum and shift of its maximum in the plane of the location of an external magnetic field (main plane) less than in perpendicular plane for plasmonic structures having linear scale tenth of kilometer; and substantially depends on the penetration angle of an incident wave in the conductive collision turbulent magnetized ionospheric plasma. The angle-of-arrival (AOA) in the main plane has the asymmetric Gaussian form while in the perpendicular plane increases at small anisotropy factors and then tends to the saturation for the power-low spectrum characterizing electron density fluctuations. Longitudinal conductivity fluctuations increase the AOAs of scattered radiation than in magnetized plasma with permittivity fluctuations. Broadening of the temporal spectrum containing the drift velocity of elongated ionospheric irregularities in the polar ionosphere allows to solve the reverse problem restoring experimentally measured velocity of the plasma streams and characteristic linear scales of anisotropic irregularities in the terrestrial ionosphere.

2018 ◽  
Vol 7 (3) ◽  
pp. 1-10 ◽  
Author(s):  
G. V. Jandieri ◽  
A. Ishimaru ◽  
B. Rawat ◽  
V. Gavrilenko ◽  
O. Kharshiladze

Statistical characteristics of scattered ordinary and extraordinary electromagnetic waves in the magnetized plasma are considered using the smooth perturbation method. Diffraction effects and polarization coefficients are taken into account. Second order statistical moments of scattered radiation are obtained for arbitrary correlation function of electron density fluctuations. Broadening of the spatial power spectrum and displacement of its maximum, wave phase structure function and the angle-of-arrivals are obtained for three-dimensional spectral function containing anisotropic Gaussian and power-law spectral functions. Scintillation level of scattered radiation is analyzed for different parameters characterizing anisotropic plasma irregularities for the ionospheric F-region. The spectral widths (first and second moments) of the power spectrum and scintillation periods are calculated for “frozen-in” drifting elongated plasma irregularities using the experimental data.


2017 ◽  
Vol 13 (1) ◽  
pp. 4593-4604 ◽  
Author(s):  
George Vakhtang Jandieri ◽  
Natalia Zhukova ◽  
Zhuzhuna Diasamidze ◽  
Mzia Diasamidze

Differential equation for two-dimensional spectral function of the phase fluctuation is derived using the modify smooth perturbation method. Second order statistical moments of the phase fluctuations are calculated taking into account polarization coefficients of both ordinary and extraordinary waves in the turbulent collision magnetized plasma and the diffraction effects. Analytical and numerical investigations in the ionospheric F region are based on the anisotropic Gaussian and power law spectral functions of electron density fluctuations including both the field-aligned anisotropy and field-perpendicular anisotropy of the plasma irregularities. Scintillation effects in this region are investigated for the small-scale ionospheric irregularities. The large-scale background plasma structures are responsible for the double-humped shape in the spatial power spectrum taking into account diffraction effects. Numerical calculations are based on the experimental data of the navigation satellites. 


2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


1990 ◽  
Vol 43 (2) ◽  
pp. 165-172 ◽  
Author(s):  
V. N. Pavlenko ◽  
V. G. Panchenko

Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Matthias Bartelmann ◽  
Johannes Dombrowski ◽  
Sara Konrad ◽  
Elena Kozlikin ◽  
Robert Lilow ◽  
...  

We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically \lesssim10\,\%≲10% up to wave numbers k\lesssim10\,h\,\mathrm{Mpc}^{-1}k≲10hMpc−1 at redshift z = 0z=0. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically \lesssim 5\,\%≲5%. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel’dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.


1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


1998 ◽  
Vol 59 (1) ◽  
pp. 69-82
Author(s):  
FRANCESCA PISANI ◽  
THIÉRY PIERRE ◽  
DIMITRI BATANI

A microwave coherent backscattering experiment has been carried out on Mirabelle, a weakly ionized plasma device, with the objective of measuring the electron-density fluctuation level. The experiment is a preliminary step in order to prepare the detection system for a microwave stimulated-backscattering experiment. The incident electromagnetic wave is focused in front of a plane grid, which excites ion acoustic or electron Bernstein waves and induces fluctuations in the plasma. The backscattering signal is collected by the launching circuit and detected by homodyne mixing. The typical ratio of the scattered power to the incident power is about 10−12 and the relative density fluctuations is of the order of δne/ne ≈10−3 against a background electron density ne=(1–5)×109 cm−3. The backscattering measurement is also compared with Langmuir-probe measurements, and gives good agreement with the relative density fluctuations. The spectral width of the backscattered signal has also been studied, by taking into account effects due to the incident-wave focusing and plasma-wave damping.


Sign in / Sign up

Export Citation Format

Share Document