scholarly journals CREATION OF A COLLECTION OF AUTOCHTHONOUS STRAINS OF WINE YEAST

2021 ◽  
Vol 5 (71) ◽  
pp. 326-341
Author(s):  
Ivan Ivanovich Suprun ◽  
◽  
Elena Vadimovna Lobodina ◽  
Natalia Mikhailovna Ageyeva ◽  
Ekaterina Adelevna Al-Nakib ◽  
...  
Keyword(s):  
2005 ◽  
Vol 34 (2) ◽  
pp. 187-191 ◽  
Author(s):  
L. Oprean ◽  
N. Darie ◽  
E. Gaspar

Author(s):  
Ramon Gonzalez ◽  
Pilar Morales
Keyword(s):  

2007 ◽  
Vol 73 (8) ◽  
pp. 2432-2439 ◽  
Author(s):  
Carole Guillaume ◽  
Pierre Delobel ◽  
Jean-Marie Sablayrolles ◽  
Bruno Blondin

ABSTRACT Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


2013 ◽  
Vol 80 (2) ◽  
pp. 704-713 ◽  
Author(s):  
Estéfani García-Ríos ◽  
Alicia Gutiérrez ◽  
Zoel Salvadó ◽  
Francisco Noé Arroyo-López ◽  
José Manuel Guillamon

ABSTRACTThe effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors.


2007 ◽  
Vol 158 (8-9) ◽  
pp. 638-643 ◽  
Author(s):  
Yuliya V. Ivannikova ◽  
Elena S. Naumova ◽  
Gennadi I. Naumov

Sign in / Sign up

Export Citation Format

Share Document