scholarly journals Provide a New Encryption Algorithm for Medical Images and Evaluate the Proposed Algorithm

2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Mehdi Lotfi ◽  
Hossein Kheiri ◽  
Azizeh Jabbari

Introduction:  In this paper, an encryption algorithm for the security of medical images is presented, which has extraordinary security. Given that the confidentiality of patient data is one of the priorities of medical informatics, the algorithm can be used to store and send medical image.Material and Methods:  In this paper, the solutions of chaotic differential equations are used to generate encryption keys. This method is more than other methods used in encoding medical images, resistant to statistics attacks, low encryption and decryption time and very high key space. In the proposed algorithm, unlike other methods that use random key generation, this method uses the production of solutions of the chaotic differential equations in a given time period for generating a key. All simulations and coding are done in MATLAB software.Results:   Chaotic Differential Equations have two very important features that make it possible to encode medical images. One is the unpredictability of the system's behavior and the other is a severe sensitivity to the initial condition.Conclusion: These two features make the method resistant to possible attacks to decode the concept of synchronization chaotic systems. Using the results of the method, medical information can be made safer than existing ones.

2015 ◽  
Vol 743 ◽  
pp. 379-384 ◽  
Author(s):  
Zhang Li Lan ◽  
Lin Zhu ◽  
Yi Cai Li ◽  
Jun Liu

Key space will be reduced after using the traditional DES algorithm to directly encrypt color images. Through combining the chaotic capability of the logistic function and by means of a specific algorithm, the fake chaotic son key’s space which is produced by the logistic chaotic pseudo-random function could be acquired. Then use the key generation algorithm to replace the traditional DES key generation algorithm. Experiment illustrates that the proposed algorithm has stronger robustness and anti-jamming capability to noise, and larger key’s space, sensitive initial keys, and better encryption effect, meanwhile it is better immune to multiple attacks.


2018 ◽  
Vol 44 (2) ◽  
pp. 35-40
Author(s):  
Tanya jabor ◽  
Hiba Taresh ◽  
Alaa Raheema

All the important information is exchanged between facilities using the internet and networks, all these data should besecret and secured probably, the personal information of person in each of these institutions day by day need to organized secretlyand the need of the cryptography systems is raised which can easily encrypt the personal and critical data and it can be shared withother centers via internet without and concerns about privacy. Chaotic performance is added to different phases of AES but very few apply it on key generation and choosing ChebyshevPolynomial will provide a chaotic map which will led to random strong key. our system based on modified advanced encryptionstandard (AES) , with encryption and decryption in real time taking to consideration the criticality of data images that beenencrypted the main encryption algorithm is the same the modification is done by replacing the key generation algorithm byChebyshev Polynomial to generate key with the required key size.


2013 ◽  
Vol 694-697 ◽  
pp. 2016-2020
Author(s):  
Shu Cong Liu ◽  
Yan Xing Song ◽  
Jing Song Yang

A new image encryption algorithm based on chaotic sequence is proposed, and the over sampled techniques is used in the Chebyshev mapping and Logistic chaotic mapping to generate multi-parameter chaotic key.A chaotic image encryption transmission system is build to achieve the encryption and decryption of the image signal,and the security and the encryption properties of the algorithm are analyzed. Simulation results show that the method ia simple and easy to achieve, and with larger key space ang good encryption effect.


2016 ◽  
Vol 10 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Massoud Sokouti ◽  
Ali Zakerolhosseini ◽  
Babak Sokouti

Medical images are regarded as important and sensitive data in the medical informatics systems. For transferring medical images over an insecure network, developing a secure encryption algorithm is necessary. Among the three main properties of security services (i.e., confidentiality, integrity, and availability), the confidentiality is the most essential feature for exchanging medical images among physicians. The Goldreich Goldwasser Halevi (GGH) algorithm can be a good choice for encrypting medical images as both the algorithm and sensitive data are represented by numeric matrices. Additionally, the GGH algorithm does not increase the size of the image and hence, its complexity will remain as simple as O(n2). However, one of the disadvantages of using the GGH algorithm is the Chosen Cipher Text attack. In our strategy, this shortcoming of GGH algorithm has been taken in to consideration and has been improved by applying the padding (i.e., snail tour XORing), before the GGH encryption process. For evaluating their performances, three measurement criteria are considered including(i)Number of Pixels Change Rate (NPCR),(ii)Unified Average Changing Intensity (UACI), and(iii)Avalanche effect. The results on three different sizes of images showed that padding GGH approach has improved UACI, NPCR, and Avalanche by almost 100%, 35%, and 45%, respectively, in comparison to the standard GGH algorithm. Also, the outcomes will make the padding GGH resist against the cipher text, the chosen cipher text, and the statistical attacks. Furthermore, increasing the avalanche effect of more than 50% is a promising achievement in comparison to the increased complexities of the proposed method in terms of encryption and decryption processes.


2011 ◽  
Vol 25 (15) ◽  
pp. 2047-2053 ◽  
Author(s):  
XING-YUAN WANG ◽  
XIAO-JUAN WANG

This paper proposes a new symmetric key encryption algorithm based on one-dimensional chaotic map. This algorithm uses the random-like property and ergodicity of chaotic systems. In the process of encryption or decryption, this algorithm generates a chaotic pseudo-random sequence, changes the initial iterative times and the increment to encrypt the plaintext, and realizes fast encryption and decryption of all kinds of files. When analyzing the algorithm's performance and security, the result shows that, compared with the method of Baptista, the proposed method is safer, faster and more powerful.


Author(s):  
Kefeng Wang ◽  
FeiYue Ye

It describes an improved encryption algorithm of a three-dimensional image based on multiple chaotic systems. The algorithm uses a variety of chaotic encryption system to cut the image into three-dimensional matrix systems, in three-dimensional space do the image scrambling transformation, three-dimensional chaotic sequence output by multiple chaotic systems achieved three color pixel substitution transformation of the spatial color image. Finally, according to the theoretical analysis and simulation results it shows that the encryption algorithm with large key space, good confidentiality, and the pixel values of the encryption image has a random uniform distribution features and zero correlation of the neighboring pixel values, verifies the proposed scheme has high security.


Author(s):  
Adnan Alam Khan ◽  
Dr. Asadullah Shah ◽  
Saghir Muhammad

Telemedicine is one of the most emerging technologies of applied medical sciences. Medical information related to patients is transmitted and stored for references and consultations. Medical images occupy huge space; in order to transmit these images may delay the process of image transmission in critical times. Image compression techniques provide a better solution to combat bandwidth scarcity problems, and transmit same image in a much lower bandwidth requirements, more faster and at the same time maintain quality. In this paper a differential image compression method is developed in which medical images are taken from a wounded patient and are compressed to reduce the bit rate of these images. Results indicate that on average 25% compression on images is achieved with 3.5 MOS taken from medical doctors and other paramedical staff the ultimately user of the images.


2018 ◽  
Vol 8 (7) ◽  
pp. 1183 ◽  
Author(s):  
Carlos Villaseñor ◽  
Eric Gutierrez-Frias ◽  
Nancy Arana-Daniel ◽  
Alma Alanis ◽  
Carlos Lopez-Franco

Hyperspectral images (HI) collect information from across the electromagnetic spectrum, and they are an essential tool for identifying materials, recognizing processes and finding objects. However, the information on an HI could be sensitive and must to be protected. Although there are many encryption schemes for images and raw data, there are not specific schemes for HI. In this paper, we introduce the idea of crossed chaotic systems and we present an ad hoc parallel crossed chaotic encryption algorithm for HI, in which we take advantage of the multidimensionality nature of the HI. Consequently, we obtain a faster encryption algorithm and with a higher entropy result than others state of the art chaotic schemes.


Sign in / Sign up

Export Citation Format

Share Document