scholarly journals Quadrupole moment of 14B exotic nucleus

2019 ◽  
Vol 12 (23) ◽  
pp. 44-50
Author(s):  
N. S. Manie

    The quadrupole moment of 14B exotic nucleus has been calculated using configuration mixing shell model with limiting number of orbital's in the model space. The core- polarization effects, are included through a microscopic theory which considers a particle-hole excitations from the core and the model space orbits into the higher orbits with 6ħω excitations using M3Y interaction. The simple harmonic oscillator potential is used to generate the single particle wave functions. Large basis no-core shell model with (0+2)ћω truncation is used for 14B nucleus. The effective charges for the protons and neutrons were calculated successfully and the theoretical quadrupole moment was compared with the experimental data, which was found to be in a good agreement.

2020 ◽  
Vol 29 (07) ◽  
pp. 2050045
Author(s):  
U. S. Ghosh ◽  
B. Mukherjee ◽  
S. Rai

Shell model calculations have been performed in [Formula: see text] model space using two different interactions viz. jj44bpn and jun45pn to explore nuclear structure in [Formula: see text]Ga. Calculated excitation energies are compared with previously reported experimental values and a good agreement has been observed. Transitions strengths are also calculated using two sets of effective charges for proton and neutron and are compared with nearby [Formula: see text]Zn isotopes. Occupation probabilities of protons and neutrons corresponding to individual orbitals (namely [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] orbital), and dominant particle configurations for individual spin states have been presented as well. Calculations suggest major role of intruder [Formula: see text] orbital in constructing the wave functions of higher angular momentum states, whereas, the lower excited states are mainly dominated by contributions from [Formula: see text] orbitals.


2018 ◽  
Vol 15 (3) ◽  
pp. 304-309
Author(s):  
Baghdad Science Journal

The electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the experimental data. The theoretical results of the quadrupole moments for some scandium isotopes performed with FPD6 interaction and Bohr-Mottelson effective charge agree with experimental values.


2016 ◽  
Vol 13 (1) ◽  
pp. 146-154
Author(s):  
Baghdad Science Journal

In this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated through Plane Wave Born Approximation (PWBA). The inclusion of core polarization effect through the effective g-factors is adequate to obtain a good agreement between the predicted and the measured magnetic dipole moments.


2010 ◽  
Vol 7 (1) ◽  
pp. 105-112
Author(s):  
Baghdad Science Journal

The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such as the 2p-shell, enhances the form factors for q-values and reproduces the data. The present results are compared with other theoretical models. PACS: 25.30.Bf Elastic electron scattering - 25.30.Dh Inelastic electron scattering to specific states – 21.60.Cs Shell model – 27.20. +n 5? A ?19


1976 ◽  
Vol 29 (3) ◽  
pp. 139 ◽  
Author(s):  
D Branford ◽  
LE Carlson ◽  
FCP Huang ◽  
N Gardner ◽  
TR Ophel ◽  
...  

A search is described for an excited Kn = 0+ rotational band based on the 6� 44 MeV level of 24Mg. Mean nuclear lifetimes have been measured by the Doppler shift attenuation method using the 12C('60,a)24Mg reaction and the results are 't'm = 66�29, 28�7 and 13�3 fs for levels at 6'44, 8�65 and 10� 58 MeV respectively. The absolute transition rates found for the y decays from the 6�44 and 8�65 MeV levels are in good agreement with the results of shell model calculations if it is assumed that these levels are the 0+ and 2 + members respectively of the excited Kn = 0+ rotational band. Based on this assumption, a result Qoo = 0�48 �0�08b is obtained for the intraband quadrupole moment. From a study of the 23Na(p, y) reaction, it is established that the J = 4 levels at 12� 63 and 13�05 MeV do not decay by enhanced E2 transitions to the 8� 65 MeV level. This suggests that neither of these levels is the 4 + member of the excited Kn = 0+ rotational band. An assignment of J" = 4+ is made to one member of the doublet at 10�58 MeV.


2018 ◽  
Vol 63 (3) ◽  
pp. 189 ◽  
Author(s):  
A. K. Hasan

The shell model (SM) is used to calculate the energy levels and transition probabilities B(E2) for 18,19,20 O isotopes. Two interactions (USDA and USDB) are used in the SDPN model space. We assume that all possible many-nucleon configurations are defined by the 0d5/2, 1s1/2, and d3/2 states that are higher than in 16 O doubly magic nucleus. The available empirical data are in a good agreement with theoretical energy levels predictions. Spins and parities were affirmed for new levels, and the transition probabilities B(E2; ↓) are predicted.


2019 ◽  
Vol 12 (23) ◽  
pp. 65-72
Author(s):  
B. S. Hameed

        The elastic transverse electron scattering form factors have been studied for the 11Li   nucleus using the Two- Frequency Shell Model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this model, the core nucleons of 9Li nucleus are assumed to move in the model space of spsdpf. The outer halo (2-neutron) in 11Li is assumed to move in the pure 1p1/2, 1d5/2, 2s1/2 orbit. The shell model calculations are carried out for core nucleons using the spsdpf-interaction.  The elastic magnetic electron scattering of the stable 7Li and exotic 11Li nuclei are also investigated through Plane Wave Born Approximation (PWBA). It is found that the difference between the total form factors of unstable isotope (11Li halo) and stable isotope 7Li is in magnitude. The measured value of the magnetic moment is also reproduced.


2015 ◽  
Vol 30 (19) ◽  
pp. 1550093 ◽  
Author(s):  
Vikas Kumar ◽  
P. C. Srivastava ◽  
Irving O. Morales

In this paper, we report comprehensive set of shell model calculations for arsenic isotopes. We performed shell model calculations with two recent effective interactions JUN45 and jj44b. The overall results for the energy levels and magnetic moments are in rather good agreement with the available experimental data. We have also reported competition of proton- and neutron-pair breakings analysis to identify which nucleon pairs are broken to obtain the total angular momentum of the calculated states. Further theoretical development is needed by enlarging model space by including [Formula: see text] and [Formula: see text] orbitals.


2019 ◽  
Vol 14 (30) ◽  
pp. 1-8
Author(s):  
Firas Y. Khudayer

Inelastic longitudinal electron scattering form factors for secondexcited state C42 in 42Ti nucleus have been calculated using shellmodel theory. Fp shell model space with configuration (1f7/2 2p3/21f5/2 2p1/2) has been adopted in order to distribute the valenceparticles (protons and neutrons) outside an inert core 40Ca. Modernmodel space effective interactions like FPD6 and GXPF1 have beenused to generate model space vectors and harmonic oscillator wavefunction as a single particle wave function. Discarder space (coreorbits + higher orbits) has been included in (core polarization effect)as a first order correction in microscopic theory to measure theinterested multipole form factors via the model space.Gogny and Michigan sum of three-range Yukawapotential (M3Y-p2) have been utilized as a residual interaction tocouple the (particle-hole) pair across the model space active particlesand the excitation energy of the pair is (2ħω) and four options for theused effective and residual interactions were determined for thetransitions from (+0) to (+01,2,3), (+21,2,3) and (+41,2,3).


2020 ◽  
Vol 18 ◽  
pp. 58-65
Author(s):  
Ali K. Hasan ◽  
Wafaa Al-mudhafar

In this study, the nuclear shell model was applied to calculate the energy levels and reduced electric quadruple transition probability B(E2) for 36Si isotope using the OXBASH code within (1d3/2, 2s1/2, 2p3/2, 1f7/2) model space and using (HASN, ZBM2 and VPTH) interactions, As this isotope contains eight neutrons outside 28Si  core in the region and when comparing the results of this study with the values. Available process compatibility was acceptable. There was good agreement at level 2+1, and angular momentum and parity were confirmed for levels 4+, 6+, and for all interactions, and the value of B(E2) corresponds well with the only practical value available for the transition .


Sign in / Sign up

Export Citation Format

Share Document