scholarly journals The video processing features research in computer systems and special purpose networks

Author(s):  
Ю.І. Шевяков ◽  
В.В. Ларін ◽  
є.л. Казаков ◽  
Ахмед Абдалла

For a typical low complexity video sequence, the weight of each P-frame in the stream is approximately three times smaller than the I-frame weight. However, taking into account the number of P-frames in the group, they make the main contribution to the total video data amount. Therefore, the possibility of upgrading coding methods for P-frames is considered on preliminary blocks' type identification with the subsequent formation of block code structures. As the correlation coefficient between adjacent frames increases, the compression ratio of the differential-represented frame's binary mask increases. The compression ratio of the differential-represented frame's binary mask varies from 3 to 21 depending on the correlation coefficient between adjacent frames. The most preferable method for constructing the compact representation technology of the binary masks of frames represented in a differential form is the approach. This is based on the identification and description of the lengths of one-dimensional binary series. A binary series is a consecutive binary elements sequence with the same value. In this case, sequences of identical binary elements are replaced by their lengths.

Author(s):  
O. I. Tymochko ◽  
◽  
V. V. Larin ◽  
Yu. I. Shevyakov ◽  
A. Abdalla ◽  
...  

For a typical low complexity video sequence, the weight of each P-frame in the stream is approximately three times smaller than the I-frame weight. However, taking into account the number of P-frames in the group, they make the main contribution to the total video data amount. Therefore, the possibility of upgrading coding methods for P-frames is considered on preliminary blocks' type identification with the subsequent formation of block code structures. As the correlation coefficient between adjacent frames increases, the compression ratio of the differential-represented frame's binary mask increases. The compression ratio of the differential-represented frame's binary mask varies from 3 to 21 depending on the correlation coefficient between adjacent frames. Estimation of the bit representation's information content of the differential-represented frame's binary mask on the basis of accounting for the nonequilibrium of the bases of the lengths of the binary series does not require an increase in the complexity of the software-hardware implementation. Due to the double-alphabetic power code, the differential-represented frame's binary mask is relative to the single-alphabet code will decrease by 17%. The most preferable method for constructing the compact representation technology of the binary masks of frames represented in a differential form is the approach. This is based on the identification and description of the lengths of one-dimensional binary series. A binary series is a consecutive binary elements sequence with the same value. In this case, sequences of identical binary elements are replaced by their lengths. And since the elements of the binary masks of the frames represented in the differential form take only two possible values 0 or 1, it is suggested to form the lengths of the binary series without indicating their level.


Author(s):  
G. Megala, Et. al.

Video compression plays a vital role in the modern social media networking with plethora of multimedia applications. It empowers transmission medium to competently transfer videos and enable resources to store the video efficiently. Nowadays high-resolution video data are transferred through the communication channel having high bit rate in order to send multiple compressed videos. There are many advances in transmission ability, efficient storage ways of these compressed video where compression is the primary task involved in multimedia services. This paper summarizes the compression standards, describes the main concepts involved in video coding. Video compression performs conversion of large raw bits of video sequence into a small compact one, achieving high compression ratio with good video perceptual quality. Removing redundant information is the main task in the video sequence compression. A survey on various block matching algorithms, quantization and entropy coding are focused. It is found that many of the methods having computational complexities needs improvement with optimization.


Author(s):  
Haixu Xi ◽  
Feiyue Ye ◽  
Sheng He ◽  
Yijun Liu ◽  
Hongfen Jiang

Batch processes and phenomena in traffic video data processing, such as traffic video image processing and intelligent transportation, are commonly used. The application of batch processing can increase the efficiency of resource conservation. However, owing to limited research on traffic video data processing conditions, batch processing activities in this area remain minimally examined. By employing database functional dependency mining, we developed in this study a workflow system. Meanwhile, the Bayesian network is a focus area of data mining. It provides an intuitive means for users to comply with causality expression approaches. Moreover, graph theory is also used in data mining area. In this study, the proposed approach depends on relational database functions to remove redundant attributes, reduce interference, and select a property order. The restoration of selective hidden naive Bayesian (SHNB) affects this property order when it is used only once. With consideration of the hidden naive Bayes (HNB) influence, rather than using one pair of HNB, it is introduced twice. We additionally designed and implemented mining dependencies from a batch traffic video processing log for data execution algorithms.


Action recognition (AR) plays a fundamental role in computer vision and video analysis. We are witnessing an astronomical increase of video data on the web and it is difficult to recognize the action in video due to different view point of camera. For AR in video sequence, it depends upon appearance in frame and optical flow in frames of video. In video spatial and temporal components of video frames features play integral role for better classification of action in videos. In the proposed system, RGB frames and optical flow frames are used for AR with the help of Convolutional Neural Network (CNN) pre-trained model Alex-Net extract features from fc7 layer. Support vector machine (SVM) classifier is used for the classification of AR in videos. For classification purpose, HMDB51 dataset have been used which includes 51 Classes of human action. The dataset is divided into 51 action categories. Using SVM classifier, extracted features are used for classification and achieved best result 95.6% accuracy as compared to other techniques of the state-of- art.v


2014 ◽  
Vol 1023 ◽  
pp. 210-213
Author(s):  
Fu Lai Liu ◽  
Shou Ming Guo ◽  
Rui Yan Du

Spectrum sensing is the key functionality for dynamic spectrum access in cognitive radio networks. Energy detection is one of the most popular spectrum sensing methods due to its low complexity and easy implementation. However, performance of the energy detector is susceptible to uncertainty in noise power. To overcome this problem, this paper proposes an effective spectrum sensing method based on correlation coefficient. The proposed method utilizes a single receiving antenna with a delay device to acquire the original received signal and the delayed signal. Then the correlation coefficient of the two signals is computed and the result is used as the test statistic. Theoretical analysis shows that the decision threshold is unrelated to noise power, thus the proposed approach can effectively overcome the influence of noise power uncertainty. Simulation results testify the effectiveness of the proposed method even in low signal-to-noise (SNR) conditions.


2021 ◽  
Vol 26 (2) ◽  
pp. 172-183
Author(s):  
E.S. Yanakova ◽  
◽  
G.T. Macharadze ◽  
L.G. Gagarina ◽  
A.A. Shvachko ◽  
...  

A turn from homogeneous to heterogeneous architectures permits to achieve the advantages of the efficiency, size, weight and power consumption, which is especially important for the built-in solutions. However, the development of the parallel software for heterogeneous computer systems is rather complex task due to the requirements of high efficiency, easy programming and the process of scaling. In the paper the efficiency of parallel-pipelined processing of video information in multiprocessor heterogeneous systems on a chip (SoC) such as DSP, GPU, ISP, VDP, VPU and others, has been investigated. A typical scheme of parallel-pipelined processing of video data using various accelerators has been presented. The scheme of the parallel-pipelined video data on heterogeneous SoC 1892VM248 has been developed. The methods of efficient parallel-pipelined processing of video data in heterogeneous computers (SoC), consisting of the operating system level, programming technologies level and the application level, have been proposed. A comparative analysis of the most common programming technologies, such as OpenCL, OpenMP, MPI, OpenAMP, has been performed. The analysis has shown that depend-ing on the device finite purpose two programming paradigms should be applied: based on OpenCL technology (for built-in system) and MPI technology (for inter-cell and inter processor interaction). The results obtained of the parallel-pipelined processing within the framework of the face recognition have confirmed the effectiveness of the chosen solutions.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 911 ◽  
Author(s):  
Md Azher Uddin ◽  
Aftab Alam ◽  
Nguyen Anh Tu ◽  
Md Siyamul Islam ◽  
Young-Koo Lee

In recent years, the amount of intelligent CCTV cameras installed in public places for surveillance has increased enormously and as a result, a large amount of video data is produced every moment. Due to this situation, there is an increasing request for the distributed processing of large-scale video data. In an intelligent video analytics platform, a submitted unstructured video undergoes through several multidisciplinary algorithms with the aim of extracting insights and making them searchable and understandable for both human and machine. Video analytics have applications ranging from surveillance to video content management. In this context, various industrial and scholarly solutions exist. However, most of the existing solutions rely on a traditional client/server framework to perform face and object recognition while lacking the support for more complex application scenarios. Furthermore, these frameworks are rarely handled in a scalable manner using distributed computing. Besides, existing works do not provide any support for low-level distributed video processing APIs (Application Programming Interfaces). They also failed to address a complete service-oriented ecosystem to meet the growing demands of consumers, researchers and developers. In order to overcome these issues, in this paper, we propose a distributed video analytics framework for intelligent video surveillance known as SIAT. The proposed framework is able to process both the real-time video streams and batch video analytics. Each real-time stream also corresponds to batch processing data. Hence, this work correlates with the symmetry concept. Furthermore, we introduce a distributed video processing library on top of Spark. SIAT exploits state-of-the-art distributed computing technologies with the aim to ensure scalability, effectiveness and fault-tolerance. Lastly, we implant and evaluate our proposed framework with the goal to authenticate our claims.


Author(s):  
Sébastien Lefèvre

Video processing and segmentation are important stages for multimedia data mining, especially with the advance and diversity of video data available. The aim of this chapter is to introduce researchers, especially new ones, to the “video representation, processing, and segmentation techniques”. This includes an easy and smooth introduction, followed by principles of video structure and representation, and then a state-of-the-art of the segmentation techniques focusing on the shot-detection. Performance evaluation and common issues are also discussed before concluding the chapter.


2012 ◽  
Vol 262 ◽  
pp. 157-162
Author(s):  
Chong Gu ◽  
Zhan Jun Si

With the rapid development of modern video technology, the range of video applications is increasing, such as online video conferencing, online classroom, online medical, etc. However, due to the quantity of video data is large, video has to be compressed and encoded appropriately, but the encoding process may cause some distortions on video quality. Therefore, how to evaluate the video quality efficiently and accurately is essential in the fields of video processing, video quality monitoring and multimedia video applications. In this article, subjective, and comprehensive evaluation method of video quality were introduced, a video quality assessment system was completed, four ITU recommended videos were encoded and evaluated by Degradation Category Rating (DCR) and Structural Similarity (SSIM) methods using five different formats. After that, comprehensive evaluations with weights were applied. Results show that data of all three evaluations have good consistency; H.264 is the best encoding method, followed by Xvid and wmv8; the higher the encoding bit rate is, the better the evaluations are, but comparing to 1000kbps, the subjective and objective evaluation scores of 1400kbps couldn’t improve obviously. The whole process could also evaluate new encodings methods, and is applicable for high-definition video, finally plays a significant role in promoting the video quality evaluation and video encoding.


Sign in / Sign up

Export Citation Format

Share Document