scholarly journals Electrical resistivity tomography of drained thermokarst lake basin on Kurungnakh island in the Lena river delta

2019 ◽  
Vol 65 (1) ◽  
pp. 92-104 ◽  
Author(s):  
V. V. Olenchenko ◽  
L. V. Tsibizov ◽  
A. A. Kartoziya ◽  
E. I. Esin

Evolution of permafrost under thermokarst lakes is an actual question in the light of such problems of cryolythic zone research as greenhouse gas emission, permafrost degradation and cryovolcanism. Recently drained thermokarst lake provide an opportunity to study under-lake permafrost state with ground geophysical methods. This lake located on Kurungnakh island (composed of Yedoma ice complex deposits) in the Lena delta was studied with electrical resistivity tomography. Local low-resistivity anomaly in the central part of the lake was found during previous geophysical research. Main goal of this work is detection of residual thermal effect from a frozen under-lake talik in an electric field. Satellite images of different years show that the drainage has taken place about 30 years ago. The area of the lake was covered in 2016 by high-resolution aerial imagery (5 cm/pixel), then digital elevation model was built using photogrammetry. These data were used for geomorphological description of the alas (depression in permafrost after lake drainage). The alas depth reaches 8 m, its size is about 300 × 500 m. It was formed probably on the last stage of Holocene thermokarst activity and it is relatively shallow in comparison to other typical alases on the island. A number of baijarachs (as a result of polygonal ice wedges thawing) were observed on the alas bottom. A line of the steepest slope marks a coast line of the lake, which allows to estimate a volume of water, which was contained in it earlier. Electrical resistivity tomography was implemented on 8 parallel profiles of 235 m. Measurements were conducted with dipole-dipole array. Basing on 3-dimensional inversion results a 3-dimensional resistivity model of under-lake deposits up to 40 m deep was made. Relatively low resistivity area (16–25 kOhm·m in comparison to 50–100 kOhm·m) was registered at the depth of 15–35 m. It is probably linked to a temperature anomaly (–3...–5 °С in comparison with –8.5 °С average value of the region). Therefore the under lake talik was fully frozen but the rest of temperature anomaly is still observable. 3-dimensional finite-element modeling of talik propagation (500 years) and refreezing (30 years) was done in axisymmetric setting taking phase transition into account. Temperature anomaly up to 0 °С in its center at the depth of 35 m was obtained as a result of the modeling. It qualitatively confirms the interpretation of electrical resistivity tomography data on the residual temperature anomaly below the basin of the drained lake.

2021 ◽  
Author(s):  
Riccardo Scandroglio ◽  
Till Rehm ◽  
Jonas K. Limbrock ◽  
Andreas Kemna ◽  
Markus Heinze ◽  
...  

<p>The warming of alpine bedrock permafrost in the last three decades and consequent reduction of frozen areas has been well documented. Its consequences like slope stability reduction put humans and infrastructures at high risk. 2020 in particular was the warmest year on record at 3000m a.s.l. embedded in the warmest decade.</p><p>Recently, the development of electrical resistivity tomography (ERT) as standard technique for quantitative permafrost investigation allows extended monitoring of this hazard even allowing including quantitative 4D monitoring strategies (Scandroglio et al., in review). Nevertheless thermo-hydro-mechanical dynamics of steep bedrock slopes cannot be totally explained by a single measurement technique and therefore multi-approach setups are necessary in the field to record external forcing and improve the deciphering of internal responses.</p><p>The Zugspitze Kammstollen is a 850m long tunnel located between 2660 and 2780m a.s.l., a few decameters under the mountain ridge. First ERT monitoring was conducted in 2007 (Krautblatter et al., 2010) and has been followed by more than one decade of intensive field work. This has led to the collection of a unique multi-approach data set of still unpublished data. Continuous logging of environmental parameters such as rock/air temperatures and water infiltration through joints as well as a dedicated thermal model (Schröder and Krautblatter, in review) provide important additional knowledge on bedrock internal dynamics. Summer ERT and seismic refraction tomography surveys with manual and automated joints’ displacement measurements on the ridge offer information on external controls, complemented by three weather stations and a 44m long borehole within 1km from the tunnel.</p><p>Year-round access to the area enables uninterrupted monitoring and maintenance of instruments for reliable data collection. “Precisely controlled natural conditions”, restricted access for researchers only and logistical support by Environmental Research Station Schneefernerhaus, make this tunnel particularly attractive for developing benchmark experiments. Some examples are the design of induced polarization monitoring, the analysis of tunnel spring water for isotopes investigation, and the multi-annual mass monitoring by means of relative gravimetry.</p><p>Here, we present the recently modernized layout of the outdoor laboratory with the latest monitoring results, opening a discussion on further possible approaches of this extensive multi-approach data set, aiming at understanding not only permafrost thermal evolution but also the connected thermo-hydro-mechanical processes.</p><p> </p><p> </p><p>Krautblatter, M. et al. (2010) ‘Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)’, Journal of Geophysical Research: Earth Surface, 115(2), pp. 1–15. doi: 10.1029/2008JF001209.</p><p>Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach (in review)’, Near Surface Geophysics.</p><p>Schröder, T. and Krautblatter, M. (in review) ‘A high-resolution multi-phase thermo-geophysical model to verify long-term electrical resistivity tomography monitoring in alpine permafrost rock walls (Zugspitze, German/Austrian Alps) (submitted)’, Earth Surface Processes and Landforms.</p>


2018 ◽  
Author(s):  
Coline Mollaret ◽  
Christin Hilbich ◽  
Cécile Pellet ◽  
Adrian Flores-Orozco ◽  
Reynald Delaloye ◽  
...  

Abstract. Mountain permafrost is sensitive to climate change and is expected to gradually degrade in response to the ongoing atmospheric warming trend. Long-term monitoring the permafrost thermal state is a key task, but it is problematic where temperatures are close to 0 °C. The energy exchange is indeed often dominantly related to latent heat effects associated with phase change (ice/water), rather than ground warming or cooling. Consequently, it is difficult to detect significant spatio-temporal variations of ground properties (e.g. ice-water ratio) that occur during the freezing/thawing process with point scale temperature monitoring alone. Hence, electrical methods have become popular in permafrost investigations as the resistivities of ice and water differ by several orders of magnitude, theoretically allowing a clear distinction between frozen and unfrozen ground. In this study we present an assessment of mountain permafrost evolution using long-term electrical resistivity tomography monitoring (ERTM) from a network of permanent sites in the Central Alps. The time series consist of more than 1000 data sets from six sites, where resistivities have been measured on a regular basis for up to twenty years. We identify systematic sources of error and apply automatic filtering procedures during data processing. In order to constrain the interpretation of the results, we analyse inversion results and long-term resistivity changes in comparison with existing borehole temperature time series. Our results show that the resistivity data set provides the most valuable insights at the melting point. A prominent permafrost degradation trend is evident for the longest time series (19 years), but also detectable for shorter time series (about a decade) at most sites. In spite of the wide range of morphological, climatological and geological differences between the sites, the observed inter-annual resistivity changes and long-term tendencies are similar for all sites of the network.


2021 ◽  
Author(s):  
Thomas A. Douglas ◽  
Christopher A. Hiemstra ◽  
Stephanie P. Saari ◽  
Kevin L. Bjella ◽  
Seth W. Campbell ◽  
...  

Accurate identification of the relationships between permafrost extent and landscape patterns helps develop airborne geophysical or remote sensing tools to map permafrost in remote locations or across large areas. These tools are particularly applicable in discontinuous permafrost where climate warming or disturbances such as human development or fire can lead to rapid permafrost degradation. We linked field-based geophysical, point-scale, and imagery surveying measurements to map permafrost at five fire scars on the Tanana Flats in central Alaska. Ground-based elevation surveys, seasonal thaw-depth profiles, and electrical resistivity tomography (ERT) measurements were combined with airborne imagery and light detection and ranging (LiDAR) to identify relationships between permafrost geomorphology and elapsed time since fire disturbance. ERT was a robust technique for mapping the presence or absence of permafrost because of the marked difference in resistivity values for frozen versus unfrozen material. There was no clear relationship between elapsed time since fire and permafrost extent at our sites. The transition zone boundaries between permafrost soils and unfrozen soils in the collapse-scar bogs at our sites had complex and unpredictable morphologies, suggesting attempts to quantify the presence or absence of permafrost using aerial measurements alone could lead to incomplete results. The results from our study indicated limitations in being able to apply airborne surveying measurements at the landscape scale toward accurately estimating permafrost extent.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yonatan Garkebo Doyoro ◽  
Ping-Yu Chang ◽  
Jordi Mahardika Puntu ◽  
Ding-Jiun Lin ◽  
Tran Van Huu ◽  
...  

AbstractGeophysical modelling performs to obtain subsurface structures in agreement with measured data. Freeware algorithms for geoelectrical data inversion have not been widely used in geophysical communities; however, different open-source modelling/inversion algorithms were developed in recent years. In this study, we review the structures and applications of openly Python-based inversion packages, such as pyGIMLi (Python Library for Inversion and Modelling in Geophysics), BERT (Boundless Electrical Resistivity Tomography), ResIPy (Resistivity and Induced Polarization with Python), pyres (Python wrapper for electrical resistivity modelling), and SimPEG (Simulation and Parameter Estimation in Geophysics). In addition, we examine the recovering ability of pyGIMLi, BERT, ResIPy, and SimPEG freeware through inversion of the same synthetic model forward responses. A versatile pyGIMLi freeware is highly suitable for various geophysical data inversion. The SimPEG framework is developed to allow the user to explore, experiment with, and iterate over multiple approaches to the inverse problem. In contrast, BERT, pyres, and ResIPy are exclusively designed for geoelectric data inversion. BERT and pyGIMLi codes can be easily modified for the intended applications. Both pyres and ResIPy use the same mesh designs and inversion algorithms, but pyres uses scripting language, while ResIPy uses a graphical user interface (GUI) that removes the need for text inputs. Our numerical modelling shows that all the tested inversion freeware could be effective for relatively larger targets. pyGIMLi and BERT could also obtain reasonable model resolutions and anomaly accuracies for small-sized subsurface structures. Based on the heterogeneous layered model and experimental target scenario results, the geoelectrical data inversion could be more effective in pyGIMLi, BERT, and SimPEG freeware packages. Moreover, this study can provide insight into implementing suitable inversion freeware for reproducible geophysical research, mainly for geoelectrical modelling.


2017 ◽  
Vol 11 (6) ◽  
pp. 2957-2974 ◽  
Author(s):  
Benjamin Mewes ◽  
Christin Hilbich ◽  
Reynald Delaloye ◽  
Christian Hauck

Abstract. Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.


1998 ◽  
Vol 44 (147) ◽  
pp. 429-435 ◽  
Author(s):  
Bryn Hubbard ◽  
Andrew Binley ◽  
Lee Slater ◽  
Roy Middleton ◽  
Bernd Kulessa

AbstractBorehole-based electrical resistivity surveys have the capacity to enhance our understanding of the structure of englacial drainage pathways in temperate ice. We summarize inter-borehole electrical resistivity tomography (ERT) as currently used in hydrogeological investigations and as adapted for imaging englacial drainage. ERT connections were successfully made for the first time in glacier ice, following artificial mineralization of borehole waters at Haut Glacier d’Arolla, Switzerland. Here, two types of electrical connection were made between boreholes spaced up to 10 m apart and drilled to depths of between 20 and 60 m. Most tests indicated the presence of resistively homogeneous ice with uniform bulk resistivities of ~108- 109Ω m. However, ERT was also successfully used to identify and characterize a hydraulically conductive englacial fracture that intersected two boreholes at a depth of ~ 13 m below the glacier surface. The presence of this connecting void was suggested by drilling records and verified by dual borehole-impulse testing. The reconstructed tomogram for these boreholes is characterized by a background ice-resistivity field of ~109Ω m that is disrupted at a depth of ~13 m by a sharp, sub-horizontal low-resistivity zone (~104Ω m). Inter-borehole ERT, therefore, has the capacity to image both uniform and fractured temperate glacier ice.


1998 ◽  
Vol 44 (147) ◽  
pp. 429-435 ◽  
Author(s):  
Bryn Hubbard ◽  
Andrew Binley ◽  
Lee Slater ◽  
Roy Middleton ◽  
Bernd Kulessa

AbstractBorehole-based electrical resistivity surveys have the capacity to enhance our understanding of the structure of englacial drainage pathways in temperate ice. We summarize inter-borehole electrical resistivity tomography (ERT) as currently used in hydrogeological investigations and as adapted for imaging englacial drainage. ERT connections were successfully made for the first time in glacier ice, following artificial mineralization of borehole waters at Haut Glacier d’Arolla, Switzerland. Here, two types of electrical connection were made between boreholes spaced up to 10 m apart and drilled to depths of between 20 and 60 m. Most tests indicated the presence of resistively homogeneous ice with uniform bulk resistivities of ~108 - 109 Ω m. However, ERT was also successfully used to identify and characterize a hydraulically conductive englacial fracture that intersected two boreholes at a depth of ~ 13 m below the glacier surface. The presence of this connecting void was suggested by drilling records and verified by dual borehole-impulse testing. The reconstructed tomogram for these boreholes is characterized by a background ice-resistivity field of ~109 Ω m that is disrupted at a depth of ~13 m by a sharp, sub-horizontal low-resistivity zone (~10 4 Ω m). Inter-borehole ERT, therefore, has the capacity to image both uniform and fractured temperate glacier ice.


2020 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Olawale OlakunleOsinowo ◽  
Ahmed Kehinde Usman ◽  
Ayotunde Allen Omitoogun

This study applied Electrical Resistivity Tomography geophysical investigation technique to evaluate the gold mineralization potential of Iperindo in Ilesha Schist Belt, southwestern Nigeria, where commercial exploitation capable of generating revenue and employment for the inhabitants has been challenged by lack / inadequate subsurface geological/geophysical information. The filtered and inverted electrical resistivity data acquired through five (5) 336 m long E – W trending profiles, established 10 m apart from each other, delineate isolated near surface but thick (> 30 m) low resistivity zones, especially at the eastern and western ends of the study area. Some of the delineated low resistivity zones (3 – 200 𝛀m) present vertical sharp edges, likely created by vertical faults that flank the zones on both sides. The low resistivity of these zones could be attributed to the occurrence of conductive material such as gold and associated base metals which probably exist in pegmatitic veins within the zones.   


Sign in / Sign up

Export Citation Format

Share Document