Effect of irradiation with high-energy protons and ions on the structure and properties of composite HTSC-2 tapes

2021 ◽  
Vol 3 ◽  
pp. 5-20
Author(s):  
A. V. Troitskii ◽  
◽  
L. Kh. Antonova ◽  
E. I. Demikhov ◽  
T. E. Demikhov ◽  
...  

The paper considers the effect of radiation defects caused by irradiation with protons (2.5 MeV), heavy ions 132Xe27+ (167, 80, 40  MeV), 86Kr17+(107 MeV), 40Ar8+(48 MeV), on the critical parameters of HTSC-2 tapes based on compounds YBa2Cu3O7 – x and GdBa2Cu3O7 – x. The results of calculations based on the model of the thermal peak of the ion track sizes are presented. The projective ranges of ions and protons in these samples are calculated. The radiation resistance of the studied samples to ion and proton radiation of the indicated energies is determined. The performed studies made it possible to detect, at low fluences of irradiation with heavy ions, an increase in the critical current (Ic), an improvement in the adhesion between the superconducting layer and the substrate, and a decrease in internal stresses in the HTSC layer. At higher values of fluences, the critical current and critical temperature decrease. It is important that the decrease in Ic begins at lower fluences than Tc.

2006 ◽  
Vol 51 (S1) ◽  
pp. S32-S43 ◽  
Author(s):  
I. V. Amirkhanov ◽  
A. Yu. Didyk ◽  
D. Z. Muzafarov ◽  
I. V. Puzynin ◽  
T. P. Puzynina ◽  
...  

Author(s):  
L. Kh. Antonova ◽  
A. G. Belov ◽  
V. V. Voronov ◽  
A. Yu. Didyk ◽  
E. I. Demikhov ◽  
...  

Author(s):  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
N. A. Sokolova

The work deals with topical issues such as development of composite nanostructured powder materials. The results of creating powders based on the system “aluminum–nitride of silicon” are presented. Complex investigations of the composition, structure and properties of powder materials, as well as coatings formed on their basis by supersonic cold gas dynamic spraying, were carried out. It has been found that the high-energy treatment of a powder mixture of aluminum with nanofibers of silicon nitride provides the formation of a composite powder in which a new phase of the Si(1-х)AlхO(1-х)Nх type is formed, which additionally increases the hardness in the coatings to be sprayed.


2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


2013 ◽  
Vol 341 ◽  
pp. 181-210 ◽  
Author(s):  
S.K. Tripathi

High-energy electron, proton, neutron, photon and ion irradiation of semiconductor diodes and solar cells has long been a topic of considerable interest in the field of semiconductor device fabrication. The inevitable damage production during the process of irradiation is used to study and engineer the defects in semiconductors. In a strong radiation environment in space, the electrical performance of solar cells is degraded due to direct exposure to energetically charged particles. A considerable amount of work has been reported on the study of radiation damage in various solar cell materials and devices in the recent past. In most cases, high-energy heavy ions damage the material by producing a large amount of extended defects, but high-energy light ions are suitable for producing and modifying the intrinsic point defects. The defects can play a variety of electronically active roles that affect the electrical, structural and optical properties of a semiconductor. This review article aims to present an overview of the advancement of research in the modification of glassy semiconducting thin films using different types of radiations (light, proton and swift heavy ions). The work which has been done in our laboratory related to irradiation induced effects in semiconducting thin films will also be compared with the existing literature.


2007 ◽  
Vol 782 (1-4) ◽  
pp. 215-223 ◽  
Author(s):  
David d'Enterria
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document