scholarly journals TINJAUAN SINGKAT TEKNOLOGI PRODUKSI BIOHIDROGEN MELALUI KONVERSI BIOMASSA

2021 ◽  
Vol 19 (01) ◽  
Author(s):  
Rafika Amalia ◽  
Nazaruddin Sinaga ◽  
Sri Widodo Agung Suedy
Keyword(s):  

Kekhawatiran akan emisi gas rumah kaca dan krisis energi yang semakin dirasakan negara-negara didunia khususnya di Indonesia menyebabkan perlu dilakukan pengembangan energi alternatif yang bersih dan ramah lingkungan. Biohidrogen yang diperoleh dari biomassa dapat menjadi alternatif terbaik untuk  mengatasi permasalaan tersebut. Penelitian ini dilakukan dengan tujuan untuk memberikan gambaran dari produksi biohidrogen berdasarkan penilitian-penelitian yang sudah ada sehingga dapat dilakukan pengembangan produksi biohidrogen melalui konversi biomassa di Indonesia. Penelitian ini dilakukan dengan studi literatur, pengumpulan data dilakukan dari penelitian-penelitian yang sudah ada untuk mengetahui proses yang sesuai dan bisa diterapkan untuk produksi biohidrogen melalui konversi biomassa di Indonesia. Analisis dalam penelitian dilakukan menggunakan perbandingan dari setiap literatur, sehingga diperoleh proses dan teknologi yang sesuai untuk produksi biohidrogen. Hasil penelitian menunjukkan pemanfaatan teknologi biohidrogen melalui konversi limbah biomassa dengan proses fermentasi anaerob pada kondisi termofilik adalah pilihan yang tepat, karena dapat menghasilkan yield yang tinggi. Untuk menunjang produksi biohidrogen yang optimal perlu diperhatikan beberapa faktor diantaranya yaitu pH, substrat, suhu, dan kondisi operasi. Jumlah biomassa yang melimpah di Indonesia dapat memudahkan produksi biohidrogen secara berkelanjutan.Kata kunci : krisis energi, biohidrogen, dark fermentation

2020 ◽  
Vol 297 ◽  
pp. 122504 ◽  
Author(s):  
Yameng Li ◽  
Zhiping Zhang ◽  
Quanguo Zhang ◽  
Nadeem Tahir ◽  
Yanyan Jing ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


2019 ◽  
Vol 44 (44) ◽  
pp. 24110-24125 ◽  
Author(s):  
Tobias Weide ◽  
Elmar Brügging ◽  
Christof Wetter ◽  
Antonio Ierardi ◽  
Marc Wichern

2020 ◽  
Vol 44 (13) ◽  
pp. 10442-10452 ◽  
Author(s):  
Tiago B. Ferreira ◽  
Gabriel C. Rego ◽  
Lucas R. Ramos ◽  
Camila A. Menezes ◽  
Edson L. Silva

Biorefinery ◽  
2019 ◽  
pp. 375-412 ◽  
Author(s):  
Juan-Rodrigo Bastidas-Oyanedel ◽  
Fabian Bonk ◽  
Mette Hedegaard Thomsen ◽  
Jens Ejbye Schmidt

2009 ◽  
Vol 33 (10) ◽  
pp. 1458-1463 ◽  
Author(s):  
Wenming Zong ◽  
Ruisong Yu ◽  
Peng Zhang ◽  
Meizhen Fan ◽  
Zhihua Zhou

Sign in / Sign up

Export Citation Format

Share Document