scholarly journals Analysis of security of post-quantum algorithm of Rainbow electronic signature against potential attacks

Radiotekhnika ◽  
2021 ◽  
pp. 85-93
Author(s):  
G.А. Maleeva

Multidimensional public key cryptography is a candidate for post-quantum cryptography, and it makes it possible  to generate particularly short signatures and quick verification. The Rainbow signature scheme proposed by J. Dean and D. Schmidt is such a multidimensional cryptosystem and it is considered to be protected against all known attacks. The need for research on Rainbow ES is justified by the fact that there is a need to develop and adopt a post-quantum national securities standard, and that in the process of the US NIST competition on the mathematical basis of cryptographic transformation method Rainbow, promising results. Therefore, it is considered important to take them into account and use them in Ukraine. The Rainbow signature scheme can be implemented simply and efficiently using linear algebra methods over a small finite field and, in particular, creates shorter signatures than those used in RSA and other post-quantum signatures [1]. In the 2nd round of NIST PQC, protected sets of Rainbow parameters are offered and several attacks on them are analyzed [1]. When comparing ES, preference is given to ES algorithms that have been selected according to unconditional criteria, as well as those that have better indicators for integral conditional criteria, because such a technique is more rational. In particular, the Rainbow-Band-Separation (RBS) attack [2] is the best known Rainbow attack with a certain set of parameters and is important. The Rainbow-Band-Separation attack restores the Rainbow secret key by solving certain systems of quadratic equations, and its complexity is measured by a well-known measure called the degree of regularity. However, as a rule, the degree of regularity is greater than the degree of solution in experiments, and it is impossible to obtain an accurate estimate. The paper proposes a new indicator of the complexity of the Rainbow-Band-Separation attack using  F4 algorithm, which gives a more accurate estimate compared to the indicator that uses the degree of regularity. The aim of the work is a comparative analysis of ES based on MQ-transformations on the criterion of stability-complexity and an attempt to understand the security of Rainbow against RBS attack using F4.

Radiotekhnika ◽  
2021 ◽  
pp. 40-58
Author(s):  
M.V. Yesina ◽  
B.S. Shahov

Today, the question of the stability of modern existing cryptographic mechanisms to quantum algorithms of cryptanalysis in particular and quantum computers in general is quite acute. This issue is actively discussed at the international level. Therefore, to solve it, NIST USA has decided to organize and is currently holding a competition for candidates for post-quantum cryptographic algorithms NIST PQC. The result of the competition should be the adoption of various types of cryptographic algorithms for standardization, namely, asymmetric encryption, key encapsulation and electronic signature (at least one algorithm of each type). 82 algorithms were submitted by the start of the competition for the standardization process. Based on the minimum eligibility criteria defined by NIST, 69 algorithms were considered for the 1st round. Given several parameters, namely, security, cost, performance, implementation characteristics, etc., 43 and 11 algorithms were excluded at the end of the 1st and 2nd rounds, respectively, and the other 15 algorithms were left for participation in the 3rd round. The algorithms left in the 2nd round can be divided into 5 different categories depending on their mathematical basis: those based on the isogeny of elliptic curves, those based on algebraic lattices, those based on mathematical code, those based on multivariate transformations and those based on hash functions. Security is the main evaluation criterion that determines competition in the NIST competition, and it is clear that candidates' software implementations are focused mainly on it. However, it is extremely important that the algorithm has an effective hardware implementation. Timely identification of hardware inefficiencies will help focus the cryptographic community efforts on more promising candidates, potentially saving a large amount of time that can be spent on cryptanalysis. This paper discusses and compares the FPGAs of Xilinx family. Data on the implementation of the candidates of the 2nd round in the process of standardization of post-quantum cryptography NIST, which are focused on the FPGA of the Xilinx family, are presented and compared.


Cryptography ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Le Luyen

Multivariate Public Key Cryptography (MPKC) is one of the main candidates for post-quantum cryptography, especially in the area of signature schemes. In this paper, we instantiate a certificate Identity-Based Signature (IBS) scheme based on Rainbow, one of the most efficient and secure multivariate signature schemes. In addition, we revise the previous identity-based signature scheme IBUOV based on the Unbalanced Oil and Vinegar (UOV) scheme on the security and choice of parameters and obtain that our scheme is more efficient than IBUOV in terms of key sizes and signature sizes.


2021 ◽  
Vol 2094 (3) ◽  
pp. 032039
Author(s):  
A V Komarova ◽  
A A Menshchikov ◽  
A G Korobeynikov

Abstract Post-quantum cryptography is becoming an increasingly popular topic for research around the world. The global cryptographic community is on the verge of standardizing new post-quantum algorithms. The world’s largest organizations conduct their own research in this direction. In this article, two hybrid schemes are proposed. They are constructed on generalized methods of increasing resistance of authentication schemes. Hybrid schemes consist of a combination of two independent signature schemes, one of which is the well-known classical asymmetric electronic signature scheme and another one is post-quantum scheme. Thus, this paper suggests the combining Crystals-Dilithium scheme with Rabin scheme and Elgamal scheme respectively. The paper also provides estimates of public key and signature lengths. Conclusions are drawn about the expediency of using generalized methods of combining with such kind of schemes.


Author(s):  
Kyung-Ah Shim ◽  
Sangyub Lee ◽  
Namhun Koo

A signature scheme based on multivariate quadratic equations, Rainbow, was selected as one of digital signature finalists for NIST Post-Quantum Cryptography Standardization Round 3. In this paper, we provide efficient implementations of Rainbow and UOV using the AVX2 instruction set. These efficient implementations include several optimizations for signing to accelerate solving linear systems and the Vinegar value substitution. We propose a new block matrix inversion (BMI) method using the Lower-Diagonal-Upper decomposition of blocks matrices based on the Schur complement that accelerates solving linear systems. Compared to UOV implemented with Gaussian elimination, our implementations with the BMI result in speedups of 12.36%, 24.3%, and 34% for signing at security categories I, III, and V, respectively. Compared to Rainbow implemented with Gaussian elimination, our implementations with the BMI result in speedups of 16.13% and 20.73% at the security categories III and V, respectively. We show that precomputation for the Vinegar value substitution and solving linear systems dramatically improve their signing. UOV with precomputation is 16.9 times, 35.5 times, and 62.8 times faster than UOV without precomputation at the three security categories, respectively. Rainbow with precomputation is 2.1 times, 2.2 times, and 2.8 times faster than Rainbow without precomputation at the three security categories, respectively. We then investigate resilience against leakage or reuse of the precomputed values in UOV and Rainbow to use the precomputation securely: leakage or reuse of the precomputed values leads to their full secret key recoveries in polynomial-time.


2019 ◽  
Vol 63 (8) ◽  
pp. 1194-1202 ◽  
Author(s):  
Dung Hoang Duong ◽  
Willy Susilo ◽  
Ha Thanh Nguyen Tran

Abstract Blind signatures are an important and useful tool in designing digital cash schemes and electronic voting protocols. Ring signatures on the other hand provide the anonymity of the signer within the ring of users. In order to fit to some real-life applications, it is useful to combine both protocols to create a blind ring signature scheme, which utilizes all of their features. In this paper, we propose, for the first time, a post-quantum blind ring signature scheme. Our scheme is constructed based on multivariate public key cryptography, which is one of the main candidates for post-quantum cryptography.


2020 ◽  
Vol 10 (4) ◽  
pp. 1353 ◽  
Author(s):  
Jinjing Shi ◽  
Shuhui Chen ◽  
Jiali Liu ◽  
Fangfang Li ◽  
Yanyan Feng ◽  
...  

A novel encryption algorithm called the chained phase-controlled operation (CPCO) is presented in this paper, inspired by CNOT operation, which indicates a stronger correlation among message states and each message state depending on not only its corresponding key but also other message states and their associated keys. Thus, it can prevent forgery effectively. According to the encryption algorithm CPCO and the classical dual signature protocols, a quantum dual signature scheme based on coherent states is proposed in this paper. It involves three participants, the customer Alice, the merchant Bob and the bank Trent. Alice expects to send her order message and payment message to Bob and Trent, respectively. It is required that the two messages must be linked to guarantee the payment is paid for the corresponding order. Thus, Alice can generate a quantum dual signature to achieve the goal. In detail, Alice firstly signs her two messages with the shared secret key. Then She connects the two signatures into a quantum dual signature. Finally, Bob and Trent severally verify the signatures of the order message and the payment message. Security analysis shows that our scheme can ensure its security against forgery, repudiation and denial. In addition, simulation experiments based on the Strawberry Fields platform are performed to valid the feasibility of CPCO. Experimental results demonstrate that CPCO is viable and the expected coherent states can be acquired with high fidelity, which indicates that the encryption algorithm of the scheme can be implemented on quantum devices effectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Youngjoo An ◽  
Hyang-Sook Lee ◽  
Juhee Lee ◽  
Seongan Lim

The notion of key substitution security on digital signatures in the multiuser setting has been proposed by Menezes and Smart in 2004. Along with the unforgeability of signature, the key substitution security is very important since it is a critical requirement for the nonrepudiation and the authentication of the signature. Lattice-based signature is a promising candidate for post-quantum cryptography, and the unforgeability of each scheme has been relatively well studied. In this paper, we present key substitution attacks on BLISS, Lyubashevsky’s signature scheme, and GPV and thus show that these signature schemes do not provide nonrepudiation. We also suggest how to avoid key substitution attack on these schemes.


2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Ms. K. Sudharani ◽  
Dr. N. K. Sakthivel

Certificateless Public Key Cryptography (CL-PKC) scheme is a new standard that combines Identity (ID)-based cryptography and tradi- tional PKC. It yields better security than the ID-based cryptography scheme without requiring digital certificates. In the CL-PKC scheme, as the Key Generation Center (KGC) generates a public key using a partial secret key, the need for authenticating the public key by a trusted third party is avoided. Due to the lack of authentication, the public key associated with the private key of a user may be replaced by anyone. Therefore, the ciphertext cannot be decrypted accurately. To mitigate this issue, an Enhanced Certificateless Proxy Signature (E-CLPS) is proposed to offer high security guarantee and requires minimum computational cost. In this work, the Hackman tool is used for detecting the dictionary attacks in the cloud. From the experimental analysis, it is observed that the proposed E-CLPS scheme yields better Attack Detection Rate, True Positive Rate, True Negative Rate and Minimum False Positives and False Negatives than the existing schemes.   


2020 ◽  
Vol E103.D (2) ◽  
pp. 188-195 ◽  
Author(s):  
Yudi ZHANG ◽  
Debiao HE ◽  
Xinyi HUANG ◽  
Ding WANG ◽  
Kim-Kwang Raymond CHOO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document