scholarly journals In vitro testing of New Zealand manuka oil and Lema oil for inhibition of Erwinia amylovora

2011 ◽  
Vol 64 ◽  
pp. 290-290
Author(s):  
E.G. Hough ◽  
Y. Jia ◽  
M.B. Horner

Current tools for the control of fire blight disease of apples caused by Erwinia amylovora have limitations including the increasing pressure by markets against the use of streptomycin Coast Manuka and Coast Lema Oil products have been previously shown to provide control against some bacterial fungal and yeast diseases Experiments were carried out to determine whether either of these products provided control against Erwinia amylovora Coast Lema Oil (05 1 2 3 4 w/v) inhibited E amylovora when added to a bacterial suspension Coast Manuka Oil (04 w/v) failed to inhibit E amylovora when added to the bacterial suspension It was also demonstrated that Coast Lema Oil (05 1 2 3 4 w/v) and Coast Manuka Oil (05 1 2 3 4 w/v) inhibited E amylovora replication when added to agar Filter paper discs soaked in Coast Lema Oil (2 3 4 w/v) caused small inhibition zones around the product when placed directly onto E amylovora Coast Manuka Oil (04 w/v) was unsuccessful in causing inhibition zones around the discs when placed directly onto E amylovora These initial results indicate that Lema oil has the potential to control fire blight in pipfruit trees

Author(s):  
Kubilay Kurtulus Bastas

Erwinia amylovora, the causative agent of fire blight disease, threatens a lot of species of the Rosaceae family. Antibiotics and copper compounds in chemical applications are most frequently are applied, but these can be phytotoxic and cause resistant strains of the pathogen. In our experiments, 20 herbal materials were tested for their antimicrobial effectiveness against the fire blight pathogen in vitro and in planta. The air-dried plants ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration values were determined by using disc diffusion method and streptomycin was used as control in all experiments. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the pathogen. Among the tested plants, Szygium aromaticum, Thymus vulgaris and Rhus cararia showed a good antibacterial activity and they inhibited the growth of E. amylovora with inhibition zone diameter ranging from 21 to 27 mm at 20% (w/v) in absolute methanol compared to streptomycin (31 mm) in vitro conditions. In vivo tests were performed by using highly virulent E. amylovora isolate (Eak24b, 91%) grown on TSA medium and inoculation on young shoots of 3-year-old Gala variety of apple and Santa Maria variety of pear seedlings at 107 CFU ml-1 density of the pathogen. Disease severity (%) was assessed by by proportion of blighted shoot length to the whole shoot length and also efficacy of the extracts was determined by using Abbott formula. The highest efficacy was obtained by S. aromaticum and T. vulgaris extracts of reducing shoot blight of cv. Gala and cv. Santa Maria by 67.81% - 64-12% and 51.50% - 51.04% ratios, respectively. Obtaining results showed that some medicinal and aromatic plant extracts might be used against fire blight disease as potential new generation chemicals on pome fruits within integrated and organic control programs.


2019 ◽  
Author(s):  
Anita Kurilla ◽  
Timea Toth ◽  
Laszlo Dorgai ◽  
Zsuzsanna Darula ◽  
Tamas Lakatos ◽  
...  

AbstractTo attract pollinators many angiosperms secrete stigma exudate and nectar in their flowers. As these nutritious fluids are ideal infection points for pathogens, both secretions contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia resistant apples are not available, certain cultivars are tolerant. It was reported that in stigma infection assay, the ‘Freedom’ cultivar was Erwinia tolerant while the ‘Jonagold’ was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed we found that an acidic chitinase III protein (Machi3-1) selectively accumulates in the nectar and stigma of the ‘Freedom’ cultivar. We demonstrate that MYB binding site containing repeats of the ‘Freedom’ Machi3-1 promoter are responsible for the strong nectar- and stigma-specific expression. As we found that in vitro the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 contribute to the tolerance by inhibiting Erwinia multiplication in the stigma exudate and in the nectar. We show that the Machi3-1 allele was introgressed from Malus floribunda 821 into different apple cultivars including the ‘Freedom’.HighlightCertain apple cultivars accumulate to high levels in their nectar and stigma an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora


Planta ◽  
2019 ◽  
Vol 251 (1) ◽  
Author(s):  
Anita Kurilla ◽  
Timea Toth ◽  
Laszlo Dorgai ◽  
Zsuzsanna Darula ◽  
Tamas Lakatos ◽  
...  

Abstract Main conclusion Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. Abstract To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the ‘Freedom’ cultivar was Erwinia tolerant, while the ‘Jonagold’ cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the ‘Freedom’ cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the ‘Freedom’. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


2015 ◽  
Vol 43 (2) ◽  
pp. 547-553 ◽  
Author(s):  
Dávid VOZIK ◽  
Katalin BÉLAFI-BAKÓ ◽  
Mária HEVESI ◽  
Erzsébet BÖSZÖRMÉNYI ◽  
András FODOR

Erwinia amylovora is one of the most frequently occurred plant pathogenic bacterium. It causes necrosis and blight symptoms on host plantsand it lead to considerable yield losses throughout the world on apple trees. There is no effective chemical treatment is currently available against fire blight. The purpose of the present study was to search a new, alternative control method. The evaluation of the plant protection potential of an enriched fraction of Xenorhabdus budapestensis cell-free conditioned media was investigated. Purified samples were tested in vitro and in plantaagainst the phytopathogenic bacterium. A reproducible method for isolation of a peptide-rich fraction from Xenorhabdus cell-free conditionedmedia was established. The process resulted in 400 mg of dry sample prepared from three litres of Xenorhabdus cell culture. Significant correlation was found between the concentration of the purified preparation and the induced inactivation zones against Erwinia amylovora Ea1 in agardiffusion test method. The minimum inhibitory concentration and minimum bactericidal concentration of the purified fraction against Ea1strain were 8 ;g/mL and 16 ;g/mL, respectively. In planta experiments were tested on an apple cultivar (‘Watson Jonathan’) susceptible to fireblight. The effective range of concentration was 62-200 μg/mL, while treatment with 300 μg/mL and larger amounts caused necrotic symptomson the petals of flowers. Current study pointed to the effectiveness of the compounds produced by X. budapestensis against fire blight. Thedevelopment of a commercially applicable formulation of these compounds would allow growers to effectively control fire blight in apple and pearorchards.


2015 ◽  
Vol 4 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Khaled H. Arafat ◽  
Shaheen A. Hanan ◽  
Abd-El-Aziz M. Rabab

The blossom blight phase of fire blight disease on pear trees, caused by the bacterium Erwinia amylovora (Burrill), was typically managed by applying the antibiotic, streptomycin sulfate and copper, to trees during blossom. Biological control agents of fire blight can be achieved by applying nonpathogenic bacteria, viz. Bacillus subtilis or Pantoea agglomerans and plant extract, viz. Harmel (Peganum harmala L.) during open flowers as spraying treatments. The objective of this study was to examine the alternative bactericides against bacterium E. amylovora in vitro and in vivo during two seasons (2013-2014) in Al-Gharbia governorate, Egypt. Our results revealed the ability of these antagonistic bacteria and plant extract can decreased fire blight severity on pear trees. Further studies at different locations in Egypt with large scale  application  would allow us to make stronger recommendations including their ability to prevent disease and used them as main component in integrated pest management program.


2011 ◽  
Vol 39 (1) ◽  
pp. 226 ◽  
Author(s):  
Yasemin EVRENOSOĞLU ◽  
Adalet MISIRLI ◽  
Hikmet SAYGILI ◽  
Emre BİLEN ◽  
Özlem BOZTEPE ◽  
...  

Fire blight disease caused by pathogenic bacterium Erwinia amylovora, is the serious disease of pear, and there is not a certain chemical management against this disease except antibiotic-type compounds such as streptomycin. It is very important to improve new fire blight resistant cultivars in case of integrated disease management. With this purpose, different crosses have been made between Pyrus communis varieties that have good fruit characteristics and resistant cultigens. Besides, self and open pollination treatments have been carried out in maternal plants. The disease resistance level of the hybrids obtained from these combinations was determined by artificial inoculations by Erwinia amylovora in greenhouse conditions. A total of 3284 hybrids were inoculated, and 2631 of them survived and were distributed to different susceptibility classes. 19.88% of the inoculated hybrids was killed by Erwinia amylovora. Total distribution of the hybrids to susceptibility classes was as 6.18% in class “A- slightly susceptible”, 3.11% in class “B- less susceptible”, 8.89% in class “C- mid-susceptible”, 20.28% in class “D- susceptible”, and 61.54% in class “E- very susceptible”. Majority of class “A- slightly susceptible” hybrids were obtained from ‘Magness’ x ‘Ankara’ combination. ‘Kieffer’ x ‘Santa Maria’, ‘Kieffer’ open pollination, ‘Magness’ x ‘Akça’, ‘Magness’ x ‘Kieffer’, ‘Magness’ x ‘Santa Maria’, ‘Mustafa Bey’ x ‘Moonglow’ treatments displayed good results with respect to “A- slightly susceptible” character. It is very important to evaluate these hybrid pear populations through different fruit and tree characteristics in the future.


2018 ◽  
Vol 117 ◽  
pp. 7-15 ◽  
Author(s):  
Smail Ait Bahadou ◽  
Abderrahmane Ouijja ◽  
Abdelkarim Karfach ◽  
Abdessalem Tahiri ◽  
Rachid Lahlali

1970 ◽  
Vol 45 (3) ◽  
pp. 225-232 ◽  
Author(s):  
MA Bashar ◽  
MA Hossain ◽  
MM Rahman ◽  
MN Uddin ◽  
MN Begum

The study was made to detect and identify antagonistic bacteria to control Rhizoctonia solani, a causal organism of sheath blight (ShB) disease of rice. Isolation of antagonistic bacteria was done from ShB infected rice leaf collected from the districts of Gazipur, Rajshahi, Bogra and Comilla. Fifty isolates of bacteria were isolated. These isolates were tested for antagonism against ShB pathogen of in PDA medium. Among the isolates of antagonistic bacteria (both fluorescent and non fluorescent), eleven produced more than 15 mm inhibition zone, were selected for this study. Remarkable inhibition zone producing ten isolates were selected to observe their antagonistic behaviour by soaking the sclerotia of Rhizoctonia solani and rice seedlings in different hours into bacterial suspension of 3.84 x 107 CFU/ml. Both the in vitro and in vivo rom showed that the sclerotial germination and sheath blight symptom expression were delayed 6-9 days. Soaking of both seedlings and sclerotia with the test bacteria was found most effective to control ShB (38% - 100%) than soaking of seedlings alone with bacterial suspension at different hours. However, BanShbFPS5 (2)B, BanShb738(3), BanShb738(2) and BanShb581(1), the four antagonistic bacterial isolates could be applied as biological agent to control sheath blight disease of rice and they could control sheath blight disease development and could delay the epidemics of the disease. Key words: Biological control; Sheath blight disease; Rhizoctonia solani; Antagonistic bacteria DOI: 10.3329/bjsir.v45i3.6529Bangladesh J. Sci. Ind. Res. 45(3), 225-232, 2010


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1111-1111 ◽  
Author(s):  
S. N. Mollaei ◽  
B. Harighi

Pear (Pyrus L.) is one of the most widely grown crops in western Iran. Since 2010, an outbreak of a disease with symptoms similar to fire blight has been observed on pear trees in various locations of Kurdistan Province. Initial flower symptoms include water-soaking and rapidly shriveling, infected flowers that remained hanging on the trees. Immature fruits become water-soaked, turned brown, and shriveled. Infected flowers and immature fruits were collected from different locations in the province. Small pieces (about 1 mm2) were excised from infected tissues, surface sterilized with 0.5% sodium hypochlorite solution, followed by rinsing in sterile-distilled water (SDW). Each piece was macerated in 2 to 3 ml of SDW, streaked onto nutrient agar sucrose or eosin methylene blue agar media, and incubated at 27 to 29°C. After 48 to 72 h, single colonies were subcultured onto the same media and stored at 4°C. In total, 74 bacteria were isolated from infected tissues. All isolates were gram-negative and rod-shaped. Based on other phenotypic properties, strains were grouped into three clusters at a similarity level of 65% (data not shown). Forty-one and 23 strains showed properties as expected for Erwinia amylovora and Enterobacter sp., respectively. Other strains showed properties resembling Pantoea agglomerans. All strains identified as E. amylovora produced an expected DNA fragment of about 900 bp by PCR using primers PE29A and PE29B corresponding to plasmid pEA29 (1). The result was confirmed by using primers AMSbL and AMSbR derived from the ams region required for amylovoran synthesis of E. amylovora. E. amylovora strains produced an expected 1,600-bp fragment (2). For the pathogenicity test, a bacterial suspension was adjusted to approximately 1 × 107 CFU/ml from cell cultures grown in nutrient broth at 27°C for 48 h. Immature pear fruits sterilized with 70% ethanol and rinsed with SDW were injected with the bacterial suspension using a 25-gauge sterile needle. Fruits injected with sterile water were used as controls. Pear fruits were kept in a mist chamber at 27 to 29°C. Symptoms were assessed up to 2 weeks after inoculation. All E. amylovora strains produced typical symptoms on inoculated immature pear fruits. Necrosis and oozing of bacterial exudates were observed after 3 to 7 days. The phylogenetic position of two selected strains was analyzed by sequence comparison of recA gene among other species in the genus Erwinia and related bacteria. The recA sequence of bacterial strains identified as E. amylovora revealed high similarity (99%) to the E. amylovora type strain (CFBP 1430). Genetic diversity of selected strains was assessed and compared with E. amylovora reference strain CFBP 1430 using ERIC and REP primers in rep-PCR analysis. (3). UPGMA cluster analysis of the combined data obtained in the rep-PCR experiments using Dice's coefficient revealed that the majority of E. amylovora strains showed the same fingerprint patterns at a similarity level of 93%, indicating genetic homogeneity among strains but clearly separated from Enterobacter sp. and P. agglomerans strains. To our knowledge, this is the first report that characterizes the phenotypic and genetic properties of E. amylovora in western part of Iran. References: (1) S. Bereswill et al. Appl. Environ. Microbiol. 58:3522, 1992. (2) S. Bereswill et al. Appl. Environ. Microbiol. 61:2636, 1995. (3) J. Versalovic et al. Mol. Cell Biol. 5:25, 1994.


2003 ◽  
Vol 9 (1) ◽  
Author(s):  
K. Honty ◽  
Z. Boldog ◽  
M. Göndör ◽  
J. Papp ◽  
K. Kása ◽  
...  

Research project has been initiated in 1999 with the aim of evaluating the degree of susceptibility/resistance of pear cultivars grown in Hungary to fire blight disease caused by Erwinia amylovora. The recently selected promising cultivars were also examined. Inoculation experiments were conducted in controlled greenhouse conditions because of quarantine regulations in Hungary. Following the disease process, development of symptoms of plant organs (shoots, flower parts, fruits) was observed. Suspension of two E. amylovora strains (Ea 21, Ea 23) isolated from pear was used in a mixture (5x108 cells x m1-1) for the inoculation. Twenty-six pear cultivars were examined and grouped into four categories: low susceptibility, moderately susceptible, susceptible and very susceptible. Most of the cultivars were susceptible or very susceptible while some promising 'Eldorado', 'Harrow Delight' and `Hosui' showed low susceptibility.


Sign in / Sign up

Export Citation Format

Share Document