The Plane Area of Daily Dynamics of Microclimate Gradient Concepts, Methods and Application Results

Author(s):  
Christophil S. Medellu
Keyword(s):  
1956 ◽  
Vol 9 (4) ◽  
pp. 454-462
Author(s):  
D. W. Waters

Professor Taylor contends that the expression used to describe a course of action so simple as to leave no room for mistakes is plain sailing; that this is nautical in origin in that it derives from a simple or plain system of navigation based upon the use of a simple or plain (manifestly foolproof) chart; that this system of navigation was known originally as plain (simple) sailing—which expression she traces back to Richard Norwood's Doctrine of Plaine and Sphericall Triangles of 1631, and that it was sophisticated into plane sailing in the eighteenth century in the belief—which she holds to be erroneous—that the expression described a form of navigation based upon the use of a plane or flat chart on which the Earth was drawn as if the Earth and oceans lay in one horizontal plane area and not upon the surface of a sphere or, more accurately, ellipsoid; and, finally, that the Admiralty Navigation Manual is in error in teaching mariners that ‘to regard certain small triangles as plane… gives rise to the expression plane sailing, which is popularly referred to as if plane were spelt plain and the sailing free from difficulty’.


1980 ◽  
Vol 17 (12) ◽  
pp. 1725-1739 ◽  
Author(s):  
Emlyn H. Koster ◽  
Brian R. Rust ◽  
Don J. Gendzwill

The widespread assumption that most water-worn gravel clasts approximate ellipsoids is confirmed by a statistical analysis of available data. The analysis demonstrates a Gaussian distribution of V/Ve ratios, centred on unit ratio, where V is clast volume and Ve the volume of a symmetric ellipsoid with equivalent triaxial dimensions. For internally isotropic and unbroken clasts, ellipsoidal form evolves as the rounding due to abrasion reaches its final stages. There appears to be no other major control on the tendency towards ellipsoidal geometry. The ellipsoidal tendency assists the interpretation of fluvial gravel deposits, which depends greatly on accurate description of clast size and fabric.Firstly, it facilitates calculation of Ap, the plane area projected upstream by clasts, a key parameter in bed–flow interactions such as preferred fabric. Formulae are derived to calculate Ap for ellipsoidal clasts with any configuration relative to flow direction. Viewing fabric in terms of the Ap variable supports and explains earlier conclusions concerning the controls on variability of imbrication angle.Secondly, an investigation of the relative merits of six size measures as descriptors of areal trends and predictors of nominal diameter, dn, concludes that (abc)1/3(the formula for dn of an ellipsoid) is superior. Other measures, namely, a, b, c, (a + c)/2, and (a + b + c)/3, are all subject to error in proportion to the degree of shape variation. Also, since downstream fining is typically accompanied by a changing proportion of oblate, bladed, prolate, and equant forms, dn is subject to inconsistent levels of under- or overestimation. The commonly used b dimension is endorsed as an acceptable predictor of dn, but a severely overestimates dn and should be abandoned. Information on errors in size analysis is presented as nomograms in the form of contoured c/b versus b/a plots and as probability distributions based on the typical range of shape variation in fluvial gravel.


Author(s):  
Yazhen Du ◽  
Wenhua Wang ◽  
Linlin Wang ◽  
Yi Huang

In order to fully exploit the potential of FPSOs in the development of offshore oil field, a new concept of sandglass-type FPSO has been put forward recently. In this paper, a novel approach is proposed for designing the main dimensions of the new sandglass-type floating body. With the application of the strip method, the wave-free frequency in heave motion is intensively investigated. The resulting expression shows that the wave-free frequency has close connection with the water-plane area and the corresponding added mass. Then a uniform approximation of the relationship between the added mass and the main dimensions of structure below the waterline is discussed. By comparing with the numerical results of minimum heave RAO of heave motion, the validity and rationality of the proposed method are verified. Besides, experiments are carried out for the sandglass-type floating model and the results support the numerical results and the proposed method. Finally, combining with other requirements in the configuration of the structure above the waterline for the operation at sea, the design scheme for the main dimensions of the sandglass-type FPSO is established.


Author(s):  
Motohiko Murai ◽  
Ken Haneda ◽  
Jun Yamanoi ◽  
Yuta Abe

A new type of floater for floating offshore wind turbine (FOWT) was proposed. The floater, named an “underwater platform”, aims at high economic efficiency of energy generation of floating wind farm. The underwater platform is a large scale submerged structure which has small water plane area and can support several wind turbines. It is expected that the platform has small motion characteristics in waves because of its small water plane area, and it contributes for FOWT to generate energy safety. In this study, the feasibility and usefulness study about the platform was carried out through experiments and numerical simulations. The first experiment was conducted with partial rigid model of the platform to verify the feasibility. From the experiment, it was confirmed that the model has small motion characteristics in waves. The experimental results were compared with numerical simulations of potential theory and they were well matched. Besides, the coupling analysis with aero-hydro dynamics was also carried out and it was confirmed that the stability of the platform was enough in steady wind condition. The second experiment was conducted with elastic body model to study the elastic deformation of the platform in waves. From the experiment, it was confirmed that the deformation is small when the draft was 250mm (50m in the actual model).


1994 ◽  
Vol 20 ◽  
pp. 183-186 ◽  
Author(s):  
S. Anandakrishnan ◽  
R. B. Alley

Microearthquakes at the base of slow-moving Ice Stream C occur many times more frequently than at the base of fast-moving Ice Stream B. We suggest that the microearthquake source sites are so-called “sticky spots”, defined as limited zones of stronger Subglacial material interspersed within a weaker matrix. The fault-plane area of the microearthquakes (O(102m2)) is therefore a measure of the size of the sticky spots. The spatial density of the microearthquakes (O(10 km-2)) is a measure of the distribution of sticky spots.The average stress drop associated with these microearthquakes is consistent with an ice-stream bed model of weak subglacial till interspersed with stronger zones that support much or all of the basal shear stress. We infer a weak inter-sticky-spot material by the large distances (O(103m)), relative to fault radius, to which the microearthquake stress change is transmitted.


Author(s):  
Jang W. Kim ◽  
Jim O’Sullivan ◽  
Atle Steen ◽  
John Halkyard

A new concept of LNG FPSO based on a deep-draft semi-submersible hull is introduced. With the deep draft, small water plane area, low center of gravity and large radius of gyration, the new LNG FPSO offers very low motions. This low-motion LNG FPSO platform provides more options and flexibilities in the selection of LNG liquefaction units, LNG containment systems, construction sites, installation methods, mooring systems (i.e. no requirements for weather-vaning), riser system and less down time compared with a conventional FPSO hull. Global performance and sloshing analyses for the new LNG FPSO hull and the conventional FPSO hull are performed to compare their operating performance for West Africa and the Northwest Australia environments.


Sign in / Sign up

Export Citation Format

Share Document