scholarly journals Вплив числа електродних пар на похибку електрохімічного давача поляризаційного опору для вимірювання шидкості атмосферної корозії

Author(s):  
С. О. Осадчук ◽  
Л. І. Ниркова ◽  
О. І. Букет

Investigate the influence of the number of electrode pairs of multi-electrode co-surface electrochemical polarization resistance sensors on the error of measurement of polarization resistance, and, accordingly, on the corrosion rate under atmospheric conditions. Method of polarization resistance. Determination of the contact area of electrodes with the aluminum substrate by the method of obtaining a print on a flat surface. Graphical modeling of the contact surface of the sensing element from the steel electrodes to the anodized aluminum substrate. Investigation results of the influence of the electrode pairs number of multielectrode cosurface electrochemical polarization resistance sensor, sensing element of which is steel-made and is located on the thermoconductive anodized aluminum substrate, on the measurement error of corrosion rate in atmospheric conditions are presented. It was shown that in determining of the corrosion rate by polarization resistance method the increasing of the electrode pairs number of sensor from one to four increases the reproducibility of measurement results and their convergence with the gravimetric data. Taking into account the form of prints of four-pair sensitive element, the area of surface contact of sensitive element of eight-pair sensor with aluminum substrate was graphically simulated. It was taken into account during modeling, that the design feature of the sensor is a possibility of full contact of one pair of the electrodes with the substrate, which explains the reason of measurement error increasing with increasing the number of electrodes’ pairs. Increasing the pairs number from one to four and then to eight decreases the part of surface of sufficiently tight contact of sensitive element with aluminum substrate from 100% to  50% and further up to 30 %. The extreme dependence of the measurement error on the number of electrodes pairs due to the increasing area of the working surface of the electrodes and reducing the area of tight contact with the aluminum heat-conducting base was revealed. It was found that four electrodes pairs for the presented sensor design is optimal. It was established that the reason of increasing of the error of polarization resistance measurement under atmospheric conditions and, accordingly, the corrosion rate, by using the electrochemical multi-electrode co-surface sensors of polarization resistance under increasing the electrode pairs number (from one to eight) is the decreasing in the surface part of a sufficiently dense contact of the sensitive element (about two or three times). Another tendency that leads to decreasing in error is decreasing in the error of setting the corresponding polarization while increasing the total area of the electrodes. The extreme dependence of this error on the number of electrode pairs with a minimum for a four-pair sensor is shown. The problem of uncontrolled variation of the measurement error by using the polarization resistance sensor of the considered construction was solved and the optimal number of electrode pairs (four) was determined. Using such of a sensor will allow to evaluate the corrosivity of the atmospheric air environment with respect to the responsible metal structures and their corrosion state in local corrosion-dangerous places with stable and minimal error.

2015 ◽  
Vol 818 ◽  
pp. 125-128
Author(s):  
Petra Lacková ◽  
Mária Mihaliková ◽  
Jana Cervová ◽  
Anna Lišková

The paper presents the evaluation of corrosion resistance of aluminium alloy AlSi1MgMn. This alloy is used above all in any atmospheric conditions. The corrosion resistance of the alloy was evaluated by determining the open circuit potential (OCP) in solution SARS (this solution simulates the industrial atmosphere) after the 10 months of exposure time. The surface of aluminum alloys were analyzed by using energy dispersive X-ray analysis after the exposure time. The basic of corrosion characteristics (corrosion potential Ecorr, corrosion rate icorr and polarization resistance Rp) were determined by potenciodynamic measurements according to Tafel’s and Stern’s methods.


1985 ◽  
Vol 38 (8) ◽  
pp. 1133 ◽  
Author(s):  
BG Pound ◽  
MH Abdurrahman ◽  
MP Glucina ◽  
GA Wright ◽  
RM Sharp

The corrosion rates of low-carbon steel, and 304, 316 and 410/420 stainless steels in simulated geothermal media containing hydrogen sulfide have been measured by means of the polarization resistance technique. Good agreement was found between weight-loss and polarization resistance measurements of the corrosion rate for all the metals tested. Carbon steel formed a non-adherent film of mackinawite (Fe1 + xS). The lack of protection afforded to the steel by the film resulted in an approximately constant corrosion rate. The stainless steels also exhibited corrosion rates that were independent of time. However, the 410 and 420 alloys formed an adherent film consisting mainly of troilite ( FeS ) which provided only limited passivity. In contrast, the 304 and 316 alloys appeared to be essentially protected by a passive film which did not seem to involve an iron sulfide phase. However, all the stainless steels, particularly the 410 and 420 alloys, showed pitting, which indicated that some breakdown of the passive films occurred.


2021 ◽  
Vol 4 (164) ◽  
pp. 166-170
Author(s):  
Ya. Kozak

For thermal fire detectors with a thermoresistive sensitive element, the method of determining its time parameters is justified. The time parameters of operation and the time constant of the thermal fire detector are considered as time parameters. The method is based on the use of the Joule-Lenz effect, for the implementation of which single pulses of electric current are passed through the thermoresistive sensitive element of the fire detector. Pulses having the shape of a quarter sinusoid or a quarter cosinusoid are used as such test signals. Using the Laplace integral transformation, analytical expressions are obtained, which represent the formalization of the reaction of the thermoresistive sensitive element of the fire detector to the corresponding test signals. These analytical expressions are used to obtain the functional dependences of the fire detector time constants on the pulse duration of the electric current and the auxiliary parameter. The auxiliary parameter is the ratio of the values ​​of the output signal of the thermal fire detector at two fixed points in time. This choice of auxiliary parameter allows to ensure invariance with respect to the transfer coefficient of the thermal fire detector with a thermoresistive sensing element. The fixed moments of time are chosen to be equal to half and three quarters of the duration of the pulses of electric current flowing through the thermoresistive sensitive element of the fire detector. The time of operation of the thermal fire detector is determined in the form of two additive components, one of which is a time constant of the fire detector, and the other is determined by the values ​​of normalized parameters in accordance with existing regulations. A sequence of procedures is given, which together represent a method of determining the time parameters of thermal fire detectors of this type.


2000 ◽  
Vol 65 (1) ◽  
pp. 73-81
Author(s):  
P. Zivkovic ◽  
J. Pjescic ◽  
S. Mentus

The alloy composed of Al(95.53%), Zn(2.85%), Sn(0.515%), Ga(0.1%) and Sr(0.009%), with the weight percents in the parentheses, was prepared by melting, using Al(99.84%), a product of the Aluminium Plant-Podgorica, as the base material. The corrosion behaviour of this alloy was tested in relation to the behaviour of the base metals, by both open curcuit potential and polarization resistance methods, in aqueous solutions of both NaCl and Na2SO4, the concentration of which varied within the range 0.00051 - 0.51 mol dm -3. Over the whole salt concentration ranges, the corrosion parameters indicate that the corrosion rate of the alloy is significantly higher than the rate of the base material. For instance, for the concentration range 0.00051 - 0.51 mol dm -3 , the stationary open circuit potentials, related to SCE, in NaCl solutions were - 1.200 to - 1.460 V for the alloy and - 0.693 to - 0.920 V for Al, while in Na2SO4 solutions, the stationary open circuit potentials were - 1.190 to - 1.465V for the alloy and - 0.780 to - 0.860V for Al. At the same time, the corrosion current density in NaCl solutions varied within 11-89 mA cm -2 for the alloy and 0.35 - 0.80 for Al, while in Na2SO4 solutions it amounted to 5.7.52 mA cm -2 for the alloy and 0.28 - 0.88 mA cm -2 for Al.


2021 ◽  
Vol 40 (1) ◽  
pp. 56-62
Author(s):  
M. Abdullahi ◽  
L.S. Kuburi ◽  
P.T. Zubairu ◽  
U. Jabo ◽  
A.A. Yahaya ◽  
...  

This paper, studied the effect of heat treatment and anodization on corrosion resistance of aluminum alloy 7075 (AA7075), with a view to improving its corrosion resistance. Microstructure and micro hardness of the anodic film of the samples were studied with the aid of optical metallurgical microscope and automated micro hardness testing machine. Linear polarization methods were used to assess the corrosion behaviour of the alloy in 0.5M HCl. The microstructure of the annealed sample showed formation of dendrites while precipitation hardened samples in palm kernel oil and SAE 40 engine oil showed precipitates of MgZn2. The SEMS result showed pores and micro cracks on the surfaces of the anodized samples, with the as cast and anodized sample in sulfuric acid exhibiting most compact with few pores. The as cast and sulfuric acid anodized sample shows highest micro hardness value of 205.33 HV, while the least value of 150.67 HV was recorded in sample precipitation hardened in SAE 40 engine oil and anodized in sulfuric acid. Analysis of the potentiodynamic polarization data and curves showed a linear relationship (decrease in icorr, decreases the corrosion rate) between current density and the corrosion rate in all the samples. Higher polarization resistance of 15.093 Ω/cm2 was recorded by the as cast and Sulfuric acid (SA) anodized sample while the precipitation treated in SAE 40 engine oil plus SA anodized sample recorded lowest polarization resistance of 5.2311 Ω/cm2. Heat treatment alone improves corrosion resistance of AA 7075 in 0.5 M HCl solution but heat treatment plus SA anodization does not improve corrosion resistance in the same environment.


Author(s):  
Naoya Kasai ◽  
So Soon Park ◽  
Kentaro Utatsu ◽  
Kazuyoshi Sekine ◽  
Shigeo Kitsukawa ◽  
...  

An AE method is an effective technique that can inspect corrosion damage of tank bottom plates to prevent leakage accidents of oil storage tanks. However, a correlation between AE signals and the corrosion behavior for bottom plates is not fully clarified. In this study, the authors considered that the corrosion regions in bottom plates become a strong acid environment by chloride ions as shown our previous work. The correlation between the AE signals and the corrosion behavior with a potentiostat for test pieces was examined in the environment. The polarization resistance was measured with an AC impedance method using a frequency response analyzer. It was clear that the polarization resistance indicated the corrosion rate for a test pieces in the experiments. While measuring the AE signals, the corrosion rate was monitored with a test piece. As a result, the AE signal showed the good correlation with the corrosion rates of the test pieces.


Sign in / Sign up

Export Citation Format

Share Document