scholarly journals PENENTUAN KEDALAMAN SUMUR BOR BERDASARKAN DATA GEOLISTRIK RESISTIVITAS DI BEBERAPA KAMPUNG DI KABUPATEN FAK-FAK

2018 ◽  
Vol 14 (1) ◽  
pp. 37-44
Author(s):  
Khristian Enggar Pamuji

Geoelectrical Resistivity method is a geophysical method that can be used to determine subsurface geology based on rock resistivity image. Resistivity survey has been done in some villages, in Fak Fak Regency, West Papua Province. The measurement method that used is sounding, whereas electrode configuration used is Dipole-dipole configuration with a stretch of 100 -150 m. The data obtained are then processed by Progress Res2Dinv. The results of this survey obtained show that in the resistivity sounding measurement point found any good groundwater aquifers, as the  water source of drilled well. Water layer with the thickness between 1-3 m at the surface (alluvial) is a rain water infiltration that is not recommended to make boreholes at this point.

Jurnal MIPA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Adey Tanauma ◽  
Herling Daud Tangkuman ◽  
Mesike Sangi

Penyebaran air tanah yang tidak merata dipengaruhi oleh faktor-faktor jenis batuan, bentuk topografi permukaan, jenis vegetasi dan jumlah curah hujan suatu tempat. Eksplorasi geofisika metode geolistrik tahanan jenis konfigurasi dipol-dipol digunakan untuk mengidentifikasi sebaran akuifer air tanah di desa Sea  Kabupaten Minahasa. Data diolah menggunakan software Res2Dinv dan menghasilkan peta model resistivitas bawah permukaan 2 dimensi yang menggambarkan keadaan lapisan tanah. Teridentifikasi sebaran akuifer air tanah permukaan dengan kedalaman ≤ 20 m di sepanjang lintasan pengukuran. Akuifer air tanah dalam diidentifikasi pada lintasan 1 dengan kedalaman sampai 30 m dan 60 m.  Akuifer air tanah dengan kedalaman< 60 m mempunyai potensi dijadikan sebagai sumber air tanahThe uneven distribution of ground water is influenced by factors such as rock type, surface topography, vegetation type and the amount of rainfall in a place. Geophysical exploration of the dipole-dipole configuration type of geoelectric resistivity method is used to identify the distribution of groundwater aquifers in Sea village, Minahasa District. The data is processed using Res2Dinv software and produces a 2-dimensional subsurface resistivity model map that describes the state of the soil layer. Distribution of surface ground aquifer with a depth of ≤ 20 m along the measurement line was identified. Deepwater aquifers were identified in l1ne 1 with depths up to 30 m and 60 m. Groundwater aquifers with a depth of <60 m have the potential to be used as ground water sources


GeoEco ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Hangga Novian Adi Putra ◽  
Wahyudi Wahyudi

<p class="TesisTextOneHalfSpace"><em>Indonesia is one of the country having a lot of geothermal fields potentially used as a source of energy. For example, Java island is noted to have almost 57 geothermal fields. One of those geothermal fields which is rarely studied is Guci geothermal field. Hence, there was conducted a research to investigate the subsurface image and geothermal system in Guci geothermal field based on resistivity data. </em><em>The research in Guci geothermal field was carried out using geoelectrical method. Resistivity geoelectrical research used two configurations, namely dipole-dipole and schlumberger. Data acquisitions for dipole-dipole configuration was done in two lines, 500 metres spread for each line. Whereas the acquisitions for schlumberger configuration was done in four points, 200-250 metres spread for each point. </em><em>Research result showed that the area of geothermal manifestation in Guci consist of top soil layer, sandstone, andesite, and a fluids-containing layer. A fluids-containing layer is estimated to be related to geothermal manifestation in Guci and is a fault zone. Fault is estimated to be a normal fault and lies in 20 metres depth. Fault within geothermal manifestation area in Guci has a role as the pathway of hot-fluid out to the surface which forms a manifestation.</em></p>


2021 ◽  
Vol 331 ◽  
pp. 03002
Author(s):  
Adrin Tohari ◽  
Dadan Dani Wardhana ◽  
Muhammad Hanif ◽  
Keigo Koizumi

The 7.4 Mw earthquake on 28th September 2018 in Palu City triggered a flow liquefaction phenomenon in the Balaroa and Petobo areas, contributing to significant casualties and building damage. This paper presents the results of a liquefaction study to map subsurface conditions in these areas using the multi-electrode resistivity method with the dipole-dipole configuration. The objective of this study is to understand factors controlling the flow liquefaction phenomenon. Based on the interpretation of 2-D resistivity images, the liquefied soil layers are characterized by lower resistivity values than the non-liquified layers. These contrasts of resistivity values form a gently sloping boundary between the liquefied and non-liquefied soil layers. The resistivity image perpendicular to the flow direction indicates the presence of a subsurface basinal morphology in the Balaroa area, suggesting that a shallow groundwater zone is present within the liquefiable soil layer. Thus, the subsurface topographical condition is the main governing factor of flow liquefaction phenomena during the 2018 Palu earthquake.


Jurnal MIPA ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Juwana Puluiyo ◽  
As’ari ◽  
Seni H.J Tongkukut

Telah dilakukan penelitian untuk mencari konfigurasi yang paling tepat dalam eksplorasi sumber daya air (air tanah) dengan metode geolistrik tahanan jenis konfigurasi Wenner Alfa, Wenner-Schlumberger, Dipol-dipol dan Pol-dipol menggunakan Resistivity meter (multichannel and multielectrode resistivity and IP meter simultaneous channel merek MAE X612-EM). Pengukuran dilakukuan pada 4 lintasan dengan panjang bentangan 96 meter dan pengolahan data menggunggunakan perangkat lunak (softwere) RES2DINV.Hasil penelitian ini menunjukkan bahwa konfigurasi Dipol-dipol adalah konfigurasi yang paling efektif dan efisien dalam mendeteksi keberadaan air tanah dengan karakteristik : waktu eksekusi 24 menit, jumlah data 609 buah, kedalaman 16 meter dan jumlah data pereksekusi 5 titik.Research has been done to find the most appropriate configuration in the exploration of water resources (groundwater) with the geoelectrical Resistivity method of configuration Wenner Alfa, Wenner-Schlumberger, Dipole-dipole and Pole-dipole by using Resistivitymeter (multichannel and multielectric resistivity and IP meter simultaneous channel brand MAE X612-EM). Measurements were performed on 4 line with a stretch length of 96 meters and data processing used software RES2DINV.The results of this study indicate that Dipole-dipole configuration is the most effective and efficient configuration in detecting the presence of groundwater with the characteristics : 24 minutes execution time, 609 pieces of data, 16 meters depth and 5 points of execution data.


2017 ◽  
Vol 12 (2) ◽  
pp. 105-116
Author(s):  
Pulung A. Pranantya ◽  
Nurlia Sadikin

In terms of geology, most areas in south of the Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the existence of underground river in caves, however, indicate the potential amount of water within the area, especially in the eastern part of the Gunungkidul District. Although limited information available, some fishermen have discovered that Seropan cave contains fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using a multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The isopach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results, i.e. 110o2223.6388 EL 8o42.874 SL. [DY1][PP2][DY1]Perbaiki grammarIn terms of geology, most areas in south of Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the exixtence of underground river in caves, however, indicate potential amount of water within the area especially in eastern part of Gunungkidul District. Although limited information available, some fishermans has discovered that Seropan cave contain fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The iso pach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results i.e. 110o2223.6388 EL 8o42.874 SL.[PP2]Sudah diperbaiki


2020 ◽  
Vol 21 (2) ◽  
pp. 123
Author(s):  
Bayu Buwana ◽  
Nurul Priyantari ◽  
Supriyadi Supriyadi

Faculty of Mathematics and Natural Sciences University of Jember located in Sumbersari District with lithological conditions in the form of volcanic rocks, lithosol soils, and regosol soils that are capable of absorbing water and potentially as aquifers. In point of fact, in the campus zona of the University of Jember including in the Faculty of Mathematics and Natural Sciences, there is always a shortage of freshwater for various academic and non-academic activities. Therefore, research needs to be conducted to assess the lithology of subsurface structures in the FMIPA zone so that the depth of groundwater layers and aquifer layers can be determined. The study was conducted using the Schlumberger array geoelectric resistivity method at 5 VES points. The results obtained in the form of resistivity log curves can be seen that at the five points VES has lithology in the form of clay, gravel, sandstone, and groundwater layer. Each VES point was identified the groundwater layer and some of them were identified as aquifers. The aquifer with the greatest thickness is found at point VES 2, which is to the west of the Baitul Ilmi Mosque, so it is recommended as the location of a new well.Keywords: lithology, aquifers, geoelectric resistivity method, groundwater.


2015 ◽  
Vol 15 (1) ◽  
pp. 33 ◽  
Author(s):  
Dewi Sedana ◽  
As’ari As’ari ◽  
Adey Tanauma

PEMETAAN AKUIFER AIR TANAH DI JALAN RINGROAD KELURAHAN MALENDENG DENGAN MENGGUNAKAN METODE GEOLISTRIK TAHANAN JENIS ABSTRAK Geolistrik merupakan salah satu metode geofisika yang dimanfaatkan dalam eksplorasi alam bawah permukaan. Prinsip kerja metode geolistrik adalah mempelajari aliran listrik di dalam bumi dan cara mendeteksinya di permukaan bumi. Penelitian ini bertujuan untuk memetakan akuifer Airtanah di Jalan Ringroad Kelurahan Malendeng berdasarkan resistivitas batuan bawah permukaan. Penelitian terdiri dari 4 titik sounding pada 1 lintasan dengan jarak setiap titik 40 meter. Hasil eksplorasi diolah dengan menggunakan software IP2WIN untuk melihat data perlapisan di bawah permukaan tanah berdasarkan nilai resistivitasnya (2D) dan pesebaran titik – titik terdapatnya akuifer Airtanah. Hasil penelitian menunjukkan bahwa akuifer Airtanah berada pada daerah yang dekat sungai yaitu pada titik 4 yang memiliki nilai resistivitas rendah kurang dari 123 Ωm. Kata kunci : Geolistrik tahanan jenis, akuifer Airtanah, software IP2WIN.   THE MAPPING OF GROUNDWATER AQUIFERS AT THE RINGROAD MALENDENG VILLAGE BY USING GEOELECTRIC RESISTIVITY METHOD ABSTRACT Geoelectric is a geophysical method that is utilized in natural subsurface exploration. The working principle of geoelectric method is to study the flow of electricity in the earth and how to detect them in the earth's surface. This study aims to map the aquifer Groundwater at the Ringroad Malendeng village based resistivity of the subsurface rocks. The study consisted of four points on 1-sounding track with the distance of each point 40 meters. Exploration results were processed using software IP2WIN to view data subsurface layering based on the value of the resistivity (2D) and  point - the point of the presence of Groundwater aquifers. The results showed that the aquifer Groundwater is the area near the river is at point 4 which has a low resistivity value of less than 123 Ωm. Keywords: Geolistrik resistivity, Groundwater aquifers, IP2WIN software.


1983 ◽  
Vol 14 (1) ◽  
pp. 33-40 ◽  
Author(s):  
P. N. Ballukraya ◽  
R. Sakthivadivel ◽  
R. Baratan

In a previous paper (Nordic Hydrology, Vol. 12, 1981), the authors have discussed the inadequacies in the technique of resistivity method for location of sites for constructing deep water walls in hard rock areas. It was pointed out that the water bearing fracture zones in the bed rock could not be identified by merely considering geoelectrical parameters such as layer resistivity. An empirical study based on the correlation of minor irregularities or deviations – “BREAKS” – in the normally smooth sounding curves with the actual driller's logs reveals that under normal geo-electric conditions these water bearing zones (hard rock aquifers) are indicated in the curve by a perceptible lowering of apparent resistivity and hence could be used as a guide for locating well sites. As such breaks may also be caused by other conditions such as lateral inhomogeneities, certain methods for distinguishing them are discussed.


Sign in / Sign up

Export Citation Format

Share Document