scholarly journals The Estimation of Subsurface Structure within Geothermal Manifestation Area as an Outflow Zone Using Geoelectrical Resistivity Method in Tegal, Jawa Tengah

GeoEco ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Hangga Novian Adi Putra ◽  
Wahyudi Wahyudi

<p class="TesisTextOneHalfSpace"><em>Indonesia is one of the country having a lot of geothermal fields potentially used as a source of energy. For example, Java island is noted to have almost 57 geothermal fields. One of those geothermal fields which is rarely studied is Guci geothermal field. Hence, there was conducted a research to investigate the subsurface image and geothermal system in Guci geothermal field based on resistivity data. </em><em>The research in Guci geothermal field was carried out using geoelectrical method. Resistivity geoelectrical research used two configurations, namely dipole-dipole and schlumberger. Data acquisitions for dipole-dipole configuration was done in two lines, 500 metres spread for each line. Whereas the acquisitions for schlumberger configuration was done in four points, 200-250 metres spread for each point. </em><em>Research result showed that the area of geothermal manifestation in Guci consist of top soil layer, sandstone, andesite, and a fluids-containing layer. A fluids-containing layer is estimated to be related to geothermal manifestation in Guci and is a fault zone. Fault is estimated to be a normal fault and lies in 20 metres depth. Fault within geothermal manifestation area in Guci has a role as the pathway of hot-fluid out to the surface which forms a manifestation.</em></p>

2018 ◽  
Vol 37 (2) ◽  
pp. 626-645
Author(s):  
Wei Zhang ◽  
Guiling Wang ◽  
Linxiao Xing ◽  
Tingxin Li ◽  
Jiayi Zhao

The geochemical characteristics of geothermically heated water can reveal deep geothermal processes, leading to a better understanding of geothermal system genesis and providing guidance for improved development and utilization of such resources. Hydrochemical and hydrogen oxygen isotope analysis of two geothermal field (district) hot springs based on regional geothermal conditions revealed that the thermal water in the Litang region is primarily of the HCO3Na type. The positive correlations found between F−, Li2+, As+, and Cl− indicated a common origin, and the relatively high Na+ and metaboric acid concentrations suggested a relatively long groundwater recharge time and a slow flow rate. The values of δD and δ18O were well distributed along the local meteoric line, indicating a groundwater recharge essentially driven by precipitation. The thermal reservoir temperature (152°C–195°C) and thermal cycle depth (3156–4070 m) were calculated, and the cold water mixing ratio (60%–68%) was obtained using the silica-enthalpy model. Finally, hydrogeochemical pathway simulation was used to analyze the evolution of geothermal water in the region. The results were further supported by the high metasilicate content in the region. Of the geothermal fields in the region, it was found that the Kahui is primarily affected by albite, calcite precipitation, and silicate, while the Gezha field is primarily affected by calcite dissolution, dolomite precipitation, and silicate.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter Pratistha Utama

Patuha geothermal field is one of the geothermal fields in West Java.  Developed by PT Geo Dipa Energi (Persero) since 2014, the geothermal field produced electricity, with installed capacity amounted to 55 MWe. Patuha geothermal system is vapour-dominated system. The geothermal manifestations are located at approximately 2,100 m asl. The Patuha field consists of three main upflow zones, namely Kawah Putih, Kawah Ciwidey, and Kawah Cibuni. This study analyzed the drill cuttings from 3 wells as the primary data with total depths ranging from 1,581 to 2,166 m with the well’s highest stable temperatures measured of ±230°C. The three wells selected for this research—PPL 02, PPL 04, and PPL 07—were analyzed to describe the rock properties and estimate the prospect areas of present-day geothermal exploration in Patuha. The objective of this paper is to develop a better understanding of the subsurface geology and its correlation to the dynamic processes (i.e., hydrothermal alteration) in Patuha geothermal field. The hydrothermal minerals are formed by near-neutral pH fluids and are characterized by quartz, calcite, clays (smectite, illite, chlorite), wairakite, epidote, and actinolite. The existence of acidic fluids is evident by the formation of acidic hydrothermal minerals e.g., anhydrite at various depth of the studied wells, particularly at PPL 07 which is located around Sugihmukti-Urug area. Moreover, the previous studies by Reyes (1990), Layman and Soemarinda (2003), Rachmawati et al. (2016), Elfina (2017) on hydrothermal minerals, geothermal manifestation characteristics, fluid geochemistry, and conceptual model are adapted to improve the analysis and interpretation of this paper.


Jurnal MIPA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Adey Tanauma ◽  
Herling Daud Tangkuman ◽  
Mesike Sangi

Penyebaran air tanah yang tidak merata dipengaruhi oleh faktor-faktor jenis batuan, bentuk topografi permukaan, jenis vegetasi dan jumlah curah hujan suatu tempat. Eksplorasi geofisika metode geolistrik tahanan jenis konfigurasi dipol-dipol digunakan untuk mengidentifikasi sebaran akuifer air tanah di desa Sea  Kabupaten Minahasa. Data diolah menggunakan software Res2Dinv dan menghasilkan peta model resistivitas bawah permukaan 2 dimensi yang menggambarkan keadaan lapisan tanah. Teridentifikasi sebaran akuifer air tanah permukaan dengan kedalaman ≤ 20 m di sepanjang lintasan pengukuran. Akuifer air tanah dalam diidentifikasi pada lintasan 1 dengan kedalaman sampai 30 m dan 60 m.  Akuifer air tanah dengan kedalaman< 60 m mempunyai potensi dijadikan sebagai sumber air tanahThe uneven distribution of ground water is influenced by factors such as rock type, surface topography, vegetation type and the amount of rainfall in a place. Geophysical exploration of the dipole-dipole configuration type of geoelectric resistivity method is used to identify the distribution of groundwater aquifers in Sea village, Minahasa District. The data is processed using Res2Dinv software and produces a 2-dimensional subsurface resistivity model map that describes the state of the soil layer. Distribution of surface ground aquifer with a depth of ≤ 20 m along the measurement line was identified. Deepwater aquifers were identified in l1ne 1 with depths up to 30 m and 60 m. Groundwater aquifers with a depth of <60 m have the potential to be used as ground water sources


2018 ◽  
Vol 14 (1) ◽  
pp. 37-44
Author(s):  
Khristian Enggar Pamuji

Geoelectrical Resistivity method is a geophysical method that can be used to determine subsurface geology based on rock resistivity image. Resistivity survey has been done in some villages, in Fak Fak Regency, West Papua Province. The measurement method that used is sounding, whereas electrode configuration used is Dipole-dipole configuration with a stretch of 100 -150 m. The data obtained are then processed by Progress Res2Dinv. The results of this survey obtained show that in the resistivity sounding measurement point found any good groundwater aquifers, as the  water source of drilled well. Water layer with the thickness between 1-3 m at the surface (alluvial) is a rain water infiltration that is not recommended to make boreholes at this point.


2021 ◽  
Vol 331 ◽  
pp. 03002
Author(s):  
Adrin Tohari ◽  
Dadan Dani Wardhana ◽  
Muhammad Hanif ◽  
Keigo Koizumi

The 7.4 Mw earthquake on 28th September 2018 in Palu City triggered a flow liquefaction phenomenon in the Balaroa and Petobo areas, contributing to significant casualties and building damage. This paper presents the results of a liquefaction study to map subsurface conditions in these areas using the multi-electrode resistivity method with the dipole-dipole configuration. The objective of this study is to understand factors controlling the flow liquefaction phenomenon. Based on the interpretation of 2-D resistivity images, the liquefied soil layers are characterized by lower resistivity values than the non-liquified layers. These contrasts of resistivity values form a gently sloping boundary between the liquefied and non-liquefied soil layers. The resistivity image perpendicular to the flow direction indicates the presence of a subsurface basinal morphology in the Balaroa area, suggesting that a shallow groundwater zone is present within the liquefiable soil layer. Thus, the subsurface topographical condition is the main governing factor of flow liquefaction phenomena during the 2018 Palu earthquake.


Jurnal MIPA ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Juwana Puluiyo ◽  
As’ari ◽  
Seni H.J Tongkukut

Telah dilakukan penelitian untuk mencari konfigurasi yang paling tepat dalam eksplorasi sumber daya air (air tanah) dengan metode geolistrik tahanan jenis konfigurasi Wenner Alfa, Wenner-Schlumberger, Dipol-dipol dan Pol-dipol menggunakan Resistivity meter (multichannel and multielectrode resistivity and IP meter simultaneous channel merek MAE X612-EM). Pengukuran dilakukuan pada 4 lintasan dengan panjang bentangan 96 meter dan pengolahan data menggunggunakan perangkat lunak (softwere) RES2DINV.Hasil penelitian ini menunjukkan bahwa konfigurasi Dipol-dipol adalah konfigurasi yang paling efektif dan efisien dalam mendeteksi keberadaan air tanah dengan karakteristik : waktu eksekusi 24 menit, jumlah data 609 buah, kedalaman 16 meter dan jumlah data pereksekusi 5 titik.Research has been done to find the most appropriate configuration in the exploration of water resources (groundwater) with the geoelectrical Resistivity method of configuration Wenner Alfa, Wenner-Schlumberger, Dipole-dipole and Pole-dipole by using Resistivitymeter (multichannel and multielectric resistivity and IP meter simultaneous channel brand MAE X612-EM). Measurements were performed on 4 line with a stretch length of 96 meters and data processing used software RES2DINV.The results of this study indicate that Dipole-dipole configuration is the most effective and efficient configuration in detecting the presence of groundwater with the characteristics : 24 minutes execution time, 609 pieces of data, 16 meters depth and 5 points of execution data.


Clay Minerals ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 117-141 ◽  
Author(s):  
S.N. Maza ◽  
G. Collo ◽  
D. Morata ◽  
C. Lizana ◽  
E. Camus ◽  
...  

ABSTRACTThe occurrence of smectite-illite and smectite-chlorite minerals series was studied along a thick clay cap (~300 m) drilled in the Cerro Pabellón geothermal field (northern Andes, Chile). X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to characterize the alteration mineralogy and clay mineral assemblages and their changes with depth. Cerro Pabellón is a high-enthalpy blind geothermal system, with a reservoir zone from ~500 m to 2000 m depth, with temperatures of 200–250°C. Three main hydrothermal alteration zones were identified: (1) argillic; (2) sub-propylitic, and (3) propylitic, with variable amounts of smectite, illite-smectite, chlorite-smectite, mixed-layer chlorite-corrensite, illite and chlorite appearing in the groundmass and filling amygdales and veinlets. Chemical and XRD data of smectites, I-S and illites show, with some exceptions, a progressive illitization with depth. The evolution of I-S with depth, shows a sigmoidal variation in the percentage of illite layers, with the conversion of smectite to R1 I-S at ~180–185°C. These temperatures are greater than those reported for other similar geothermal fields and might indicate, at least in part, the efficiency of the clay cap in terms of restricting the circulation of hydrothermal fluids in low-permeability rocks. Our results highlight the importance of a better understanding of clay-mineral evolution in active geothermal systems, not only as a direct (or indirect) way to control temperature evolution, but also as a control on permeability/porosity efficiency of the clay cap.


Geophysics ◽  
1978 ◽  
Vol 43 (7) ◽  
pp. 1485-1500 ◽  
Author(s):  
Norman Harthill

A quadripole resistivity survey of the Imperial Valley, California was carried out from the Salton Sea in the north to the Mexican border in the south. The east and west boundaries of the survey were the topographic limits of the valley. The quadripole resistivity method consists of sequentially energizing two orthogonal bipole sources with a square wave of electric current and measuring the resultant electric fields with a pair of orthogonal wire receivers. Two resultant electric fields are measured and by combining them in different proportions, their resultant can be made to rotate through 360 degrees. By performing this procedure, an ellipse of resistivity can be calculated at each measurement location. The arithmetic mean of the maximum and minimum axes of the ellipse is a tensor invariant resistivity. It was this value which was used to define the variation of electrical resistivity over the Imperial Valley. The quadripole survey of the Imperial Valley was undertaken to compare its known geothermal fields with previously unsurveyed areas. The results show that the geothermal fields of the Imperial Valley have distinctive resistivity characteristics. A large circular area south of the city of Brawley was found which has the same characteristics as the known geothermal fields. From the resistivity data, it is predicted that this south Brawley resistivity anomaly represents a geothermal field which will produce water with a temperature of approximately 200°C and with a salinity between 20,000 and 50,000 ppm. A well to test the prospect was scheduled to be drilled early in 1978.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyosuke Okamoto ◽  
Hiroshi Asanuma ◽  
Hiro Nimiya

AbstractSubsurface structure survey based on horizontal-to-vertical (H/V) spectral ratios is widely conducted. The major merit of this survey is its convenience to obtain a stable result using a single station. Spatial variations of H/V spectral ratios are well-known phenomena, and it has been used to estimate the spatial fluctuation in subsurface structures. It is reasonable to anticipate temporal variations in H/V spectral ratios, especially in areas like geothermal fields, carbon capture and storage fields, etc., where rich fluid flows are expected, although there are few reports about the temporal changes. In Okuaizu Geothermal Field (OGF), Japan, dense seismic monitoring was deployed in 2015, and continuous monitoring has been consistent. We observed the H/V spectral ratios in OGF and found their repeated temporary drops. These drops seemed to be derived from local fluid activities according to a numerical calculation. Based on this finding, we examined a coherency between the H/V spectral ratios and fluid activities in OGF and found a significance. In conclusion, monitoring H/V spectral ratios can enable us to grasp fluid activities that sometimes could lead to a relatively large seismic event.


2020 ◽  
Vol 21 (2) ◽  
pp. 123
Author(s):  
Bayu Buwana ◽  
Nurul Priyantari ◽  
Supriyadi Supriyadi

Faculty of Mathematics and Natural Sciences University of Jember located in Sumbersari District with lithological conditions in the form of volcanic rocks, lithosol soils, and regosol soils that are capable of absorbing water and potentially as aquifers. In point of fact, in the campus zona of the University of Jember including in the Faculty of Mathematics and Natural Sciences, there is always a shortage of freshwater for various academic and non-academic activities. Therefore, research needs to be conducted to assess the lithology of subsurface structures in the FMIPA zone so that the depth of groundwater layers and aquifer layers can be determined. The study was conducted using the Schlumberger array geoelectric resistivity method at 5 VES points. The results obtained in the form of resistivity log curves can be seen that at the five points VES has lithology in the form of clay, gravel, sandstone, and groundwater layer. Each VES point was identified the groundwater layer and some of them were identified as aquifers. The aquifer with the greatest thickness is found at point VES 2, which is to the west of the Baitul Ilmi Mosque, so it is recommended as the location of a new well.Keywords: lithology, aquifers, geoelectric resistivity method, groundwater.


Sign in / Sign up

Export Citation Format

Share Document