SISTEM PAKAR MENDIAGNOSA VIRUS MAYORA DENGAN METODE VARIABLE CENTERED INTELLIGENT RULE SYSTEM (VCIRS)

Author(s):  
Siti Nurhena ◽  
Nelly Astuti Hasibuan ◽  
Kurnia Ulfa

The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms. Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms. With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms.Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms.With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)

Author(s):  
Cyrus B. Meher-Homji

This paper presents a study into the application of Artificial Intelligence (AI) techniques (specifically Expert Systems) to the problem of turbomachine diagnostics. The diagnostic process is described and a model for computer implementation provided. Some diagnostic examples are provided to explain the methodology. Expert system development is underway at the author’s corporation for incorporation in online monitoring and diagnostic systems.


2020 ◽  
Vol 1 (2) ◽  
pp. 94
Author(s):  
Mhd. Iskandar Romadon Hasibuan

At this time the use of computer peripheral technology has grown rapidly and is popular in the community. Most people use it not only for commercial purposes, but also to obtain information on the detection of disease quickly and efficiently with computer-based applications that can help the general public to find out the causes and symptoms of these diseases. For this reason, we need a system designed to be able to mimic the expertise of an expert in answering questions and solving a problem in accordance with the knowledge of an expert entered into a computer system. The development of Artificial Intelligence technology that has occurred has enabled the Expert System to be applied in detecting diseases using the programming language. One of them is in providing information about various problems, especially ITP (Idiopathic Thrombocytopenic Purpura) disease. The expert system method used is the Variable Centered Intelligent Rule System (VCIRS) used to deal with diagnosing ITP disease. With the facilities provided for users and administrators, it allows both users and administrators to use this system according to their individual needs. Users are given the ease of knowing information about ITP disease, its causes and prevention. This Expert System was created using the Microsoft Visual Basic 2008 Programming Language.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Amit K. Sinha 1 ◽  
Andrew J. Jacob 2

Expert systems, a type of artificial intelligence that replicate how experts think, can aide unskilled users in making decisions or apply an expert’s thought process to a sample much larger than could be examined by a human expert. In this paper, an expert system that ranks financial securities using fuzzy membership functions is developed and applied to form portfolios. Our results indicate that this approach to form stock portfolios can result in superior returns than the market as measured by the return on the S&P 500. These portfolios may also provide superior risk-adjusted returns when compared to the market.


2021 ◽  
Author(s):  
Oleg Varlamov

Methodological and applied issues of the basics of creating knowledge bases and expert systems of logical artificial intelligence are considered. The software package "MIV Expert Systems Designer" (KESMI) Wi!Mi RAZUMATOR" (version 2.1), which is a convenient tool for the development of intelligent information systems. Examples of creating mivar expert systems and several laboratory works are given. The reader, having studied this tutorial, will be able to independently create expert systems based on KESMI. The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


2021 ◽  
Author(s):  
Oleg Varlamov

The multidimensional open epistemological active network MOGAN is the basis for the transition to a qualitatively new level of creating logical artificial intelligence. Mivar databases and rules became the foundation for the creation of MOGAN. The results of the analysis and generalization of data representation structures of various data models are presented: from relational to "Entity — Relationship" (ER-model). On the basis of this generalization, a new model of data and rules is created: the mivar information space "Thing-Property-Relation". The logic-computational processing of data in this new model of data and rules is shown, which has linear computational complexity relative to the number of rules. MOGAN is a development of Rule - Based Systems and allows you to quickly and easily design algorithms and work with logical reasoning in the "If..., Then..." format. An example of creating a mivar expert system for solving problems in the model area "Geometry"is given. Mivar databases and rules can be used to model cause-and-effect relationships in different subject areas and to create knowledge bases of new-generation applied artificial intelligence systems and real-time mivar expert systems with the transition to"Big Knowledge". The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


1989 ◽  
Vol 20 (2) ◽  
pp. 331 ◽  
Author(s):  
P.L. Baker

Artificial Intelligence (Al) systems have been used with some success in the areas of dipmeter interpretation, quantitative log interpretation and well-to-well correlation. A prototype expert system has been developed using a rule-based approach to lithology identification. Extensions of the system are now being considered to do mineral identification for the problem of mineral model construction for multi-mineral log interpretation algorithms.


2018 ◽  
Vol 2 (2) ◽  
pp. 530-535 ◽  
Author(s):  
Sella Marselena ◽  
Ause Labellapansa ◽  
Abdul Syukur

Many pets can be played with, socialize and even live together with humans. Numbers of animal clinics have increased to provide care for pets. This study focuses on Dog as pet. Desease and improper treatment of dog will adversely affect the Dog. In dealing with the problem of Dog disease, Dog owners may experience difficulties due to limited number of clinics and veterinarians, especially in rural areas. As a solution, Artificial Intelligence is used by using expert systems that can help inexperienced medical personnel diagnose early symptoms of Dog disease. The search method used in this research is Forward Chaining and Bayes Theorem method to handle uncertainties that arised. Based on knowledge acquisition, 3 diseases were obtained with 38 simptoms and 60 cases. Based on the tests conducted then obtained the sensitivity value of 80%, the value of accuracy of 88.6% indicates that this expert system is able to diagnose dog diseasesKeywords: Dog, Expert System, Forward Chaining, Bayes Theorem.  


2020 ◽  
Vol 1 (2) ◽  
pp. 26
Author(s):  
Rosyid Ridlo Al Hakim ◽  
Erfan Rusdi ◽  
Muhammad Akbar Setiawan

Since being confirmed by WHO, the status of COVID-19 outbreak has become a global pandemic, the number of cases has been confirmed positive, cured, and even death worldwide. Artificial intelligence in the medical has given rise to expert systems that can replace the role of experts (doctors). Tools to detect someone affected by COVID-19 have not been widely applied in all regions. Banyumas Regency, Indonesia is included confirmed region of COVID-19 cases, and it’s difficult for someone to know the symptoms that are felt whether these symptoms include indications of someone ODP, PDP, positive, or negative COVID-19, and still at least a referral hospital handling COVID-19. Expert system with certainty factor can help someone make a self-diagnose whether including ODP, PDP, positive, or negative COVID-19. This expert system provides ODP diagnostic results with a confidence level of 99.96%, PDP 99.99790%, positive 99.9999997%, negative 99.760384%, and the application runs well on Android OS


Author(s):  
Adi Armoni

In recent years we have witnessed sweeping developments in information technology. Currently, the most promising and interesting domain seemed to be the artificial intelligence. Within this field we see now a growing interest in the medical applications. The purpose of this article is to present a general review of the main areas of artificial intelligence and its applications to the medical domain. The review will focus on artificial intelligence applications to radiology, robotically-operated surgical procedures and different kinds of expert systems.


Sign in / Sign up

Export Citation Format

Share Document