scholarly journals Pengenalan Karakter Tulisan Menggunakan Metode Learning Vector Quantization

2019 ◽  
Vol 1 (2) ◽  
pp. 23
Author(s):  
Dinda Izmya Nurpadillah ◽  
Haviluddin Haviluddin ◽  
Herman Santoso Pakpahan ◽  
Islamiyah Islamiyah ◽  
Hario Jati Setyadi

Artikel ini mengimplementasikan metode Learning Vector Quantization (LVQ) dalam mengenali pola aksara Sunda. Berdasarkan hasil eksperimen dengan berbagai parameter seperti learning rate dan jumlah hidden layer maka metode LVQ cukup akurat dalam mengenali pola aksara Sunda dengan nilai akurasi sebesar 6.66% dari data yang berhasil dikenali sebanyak 28 data dengan total data uji sebanyak 42 data dengan variasi learning rate sebesar 0.01 dan jumlah hidden layer sebanyak 90 layer. Hasil akurasi tersebut didapatkan dengan waktu pembelajaran yaitu selama 17 menit 22 detik. Adapun mean square error (MSE) yang dihasilkan sebesar 0.0408. Dari hasil akurasi, MSE dan waktu pembelajaran yang didapatkan maka dapat dikatakan metode LVQ belum optimal dalam memecahkan masalah pengenalan pola terutama aksara Sunda. Teknik optimalisasi kepada proses pembelajaran LVQ dengan algoritma-algoritma optimasi merupakan rencana penelitian selanjutnya.

2019 ◽  
Vol 1 (2) ◽  
pp. 14
Author(s):  
Ni’mah Moham ◽  
Felix Andika Dwiyanto ◽  
Herman Santoso Pakpahan ◽  
Islamiyah Islamiyah ◽  
Hario Jati Setyadi

Artikel ini bertujuan untuk menjelaskan langkah-langkah kerja metode Backpropagation Neural Network (BPNN) dalam mengenali pola Aksara Lontara Bugis Makassar dan menjelaskan seberapa akurat dalam mengenali pola aksara Lontara Bugis Makassar. Dari hasil pengujian, diperoleh tingkat akurasi sebesar 76.08%, dengan parameter learning rate sebesar 0,02, epoch maksimum sebesar 50 epoch dan hidden layer sebanyak 90 neuron berdasarkan ciri 8. Adapun, performa mean square error (MSE) sebesar 0.00424 telah diperoleh. Namun demikian, waktu yang dibutuhkan saat proses pembelajaran terbilang cukup lama yaitu 16 menit 56 detik. Berdasarkan hasil pengujian metode BPNN dapat direkomendasikan untuk mengenali pola aksara Lontara Bugis Makassar dalam rangka menunjang pembelajaran kepada masyarakat.


2019 ◽  
Vol 2 (2) ◽  
pp. 77
Author(s):  
Susilawati Susilawati ◽  
Muhathir Muhathir

<p>Restricted boltzmann machines (RBM) merupakan algoritma pembelajaran jaringan syaraf tanpa pengawaas (<em>unsupervised learning</em>) yang hanya terdiri dari dua lapisan yang <em>visible layer</em> dan <em>hidden layer</em>. Kinerja RBM sangat dipengaruhi oleh parameter-parameternya seperti fungsi aktivasi yang digunakan untuk mengaktifkan neuron pada jaringan dan <em>learning rate</em> serta <em>momentum</em> untuk mempercepat proses pembelajaran. Pemilihan fungsi aktivasi yang tepat sangat mempengaruhi kinerja dalam menentukan <em>Mean Square Error</em> (MSE) pada jaringan saraf RBM. Fungsi aktivasi yang digunakan pada jaringan RBM adalah fungsi aktivasi sigmoid. Beberapa varian dari fungsi aktivasi sigmoid seperti fungsi sigmoid biner dan sigmoid tangen hiperbolik (tanh). Dengan menggunakan dataset MNIST untuk pembelajaran dan pengujian, terlihat bahwa tingkat keberhasilan untuk klasifikasi pada fungsi aktivasi sigmoid biner, ditentukan oleh nilai MSE yang kecil. Berbeda dengan fungsi aktivasi tangen nilai MSE menaik seiring bertambahnya jumlah epoch. Fungsi aktivasi sigmoid biner dengan learning rate 0.05 dan momentum 0.7 memiliki tingkat pengenalan tulisan tangan yang tinggi sebesar 93.42%, diikuti dengan learning rate 0.01 momentum 0.9 yakni 91.92%, learning rate 0.05 momentum 0.5 yakni 91.31%, learning rate 0.01 momentum 0.7 sebesar 90.56% dan terakhir learning rate 0.01 momentum 0.5 sebesar 87.49%.</p>


2021 ◽  
pp. 1-9
Author(s):  
Rajashree Dash ◽  
Anuradha Routray ◽  
Rasmita Dash ◽  
Rasmita Rautray

Predicting future price of Gold has always been an intriguing field of investigation for researchers as well as investors who desire to invest in present and gain profit in the future. Since ancient time, Gold is being arbitrated as a leading asset in monetary business. As the worth of gold changes within confined boundaries, reducing the effect of inflation, so it is a beneficial property favoured by many stakeholders. Hence, there is always an urge of a more authenticate model for forecasting the gold price based upon the changes in it in a previous time frame. This study focuses on designing an efficient predictor model using a Pi-Sigma Neural Network (PSNN) for forecasting future gold. The underlying motivation of using PSNN is its quick learning and easy implementation compared to other neural networks. The fixed unit weights used in between hidden and output layer of PSNN helps it in achieving faster learning speed compared to other similar types of networks. But estimating the unknown weights used in between the input and hidden layer is still a major challenge in its design phase. As final outcome of the network is highly influenced by its weight, so a novel Crow Search based nature inspired optimization algorithm (CSA) is proposed to estimate these adjustable weights of the network. The proposed model is also compared with Particle Swarm Optimization (PSO) and Differential Evolution (DE) based learning of PSNN. The model is validated over two historical datasets such as Gold/INR and Gold/AED by considering three statistical errors such as Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Empirical observations clearly show that, the developed CSA-PSNN predictor model is providing better prediction results compared to PSO-PSNN and DE-PSNN model.


2020 ◽  
Vol 4 (3) ◽  
pp. 56
Author(s):  
Firman Tawakal ◽  
Ahmedika Azkiya

Dengue Hemorrhagic Fever is a disease that is carried and transmitted through the mosquito Aedes aegypti and Aedes albopictus which is commonly found in tropical and subtropical regions such as in Indonesia to Northern Australia. in 2013 there are 2.35 million reported cases, which is 37,687 case is heavy cases of DHF. DHF’s symthoms have a similarity with typhoid fever, it often occur wrong handling. Therefore we need a system that is able to diagnose the disease suffered by patients, so that they can recognize whether the patient has DHF or Typhoid. The system will be built using Neural Network Learning Vector Quantization (LVQ) based on the best training results. This research is to diagnose Dengue Hemorrhagic Fever using LVQ with input parameters are hemoglobin, leukocytes, platelets, and heritrocytes. Based on result, the best accuracy is 97,14% with Mean Square Error (MSE) is 0.028571 with 84 train data and 36 test data. Conclution from the research is LVQ method can diagnose DHF Keywords: Dengue Hemorrhagic Fever; Learning Vector Quantization; classification; Neural Network;


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wuwei Liu ◽  
Jingdong Yan

In recent years, people are more and more interested in time series modeling and its application in prediction. This paper mainly discusses a financial time series image algorithm based on wavelet analysis and data fusion. In this research, we conducted an in-depth study on the scale decomposition sequence and wavelet transform sequence in different scale domains of wavelet transform according to the scale change rule based on wavelet transform. We use wavelet neural network with different input neurons and hidden neurons to predict, respectively. Finally, the prediction results are integrated into the final prediction results based on the original time series by using wavelet reconstruction technology. Using RBF algorithm in neural network and SPSS Clementine, the wavelet transform sequences on five scales are modeled. Each network model has three layers: one input layer, one hidden layer, and one output layer, and each output layer has only one output element. In order to compare the prediction effect of the model proposed in this study, the ordinary RBF network is used to model and predict the log yield itself. When the input sample is 5, the minimum mean square error is obtained when the hidden layer is 6, and the mean square error is 1.6349. The mean square error of the training phase is 0.0209, and the validation error is 1.6141. The results show that the prediction results of the wavelet prediction method combined with the RBF network prediction method are better than those of wavelet prediction or RBF network prediction.


Author(s):  
Eko Arianto ◽  
Laifa Rahmawati

One of the lessons for mental disorder students in Special Schools is practicum lessons in the form of vocational education. This lesson uses equipment that requires prudence. Mental disorder students have characteristics that are low memory and move based on intuition. Teachers should pay extra attention especially to detect student behavior during the learning. This detection is needed for learning to take place smoothly and students are safe from the dangers around the practicum place. Teacher's feedback on the detection obtained in the form of a warning from the teacher. This study is expected to be useful for providing a special detection pattern for students to assist teachers by providing feedback in the form of warnings using natural motion detection technology. This research was conducted using Kinect as data input and data was processed using artificial neural network and Learning Vector Quantization method. The dangerous attitude used in the test is the attitude of standing at the time of drilling position. The data used by training is 126 data and do training using LVQ. At the LVQ training stage, the training was conducted with parameter of Learning Rate 0,05, maximum Iteration 44, reduction of learning rate 0.01, and Learning rate minimum 0,02.


2020 ◽  
Vol 6 (1) ◽  
pp. 28-35
Author(s):  
Ery Murniyasih ◽  
Luluk Suryani

Penelitian ini bertujuan : (1). Membuat suatu aplikasi untuk identifikasi jenis penyakit pada tanaman padi berdasarkan bentuk bercak daun padi.;(2). Menerapkan metode Learning Vector Quantization (LVQ) pada identifikasi penyakit tanaman padi. Pada tahapan learning dan testing pada LVQ citra diproses menjadi Grayscale, Thresholding, dan segmentasi. Di tahap pelatihan, metode LVQ digunakan untuk menentukan bobot, target error, max epoch, dan laju pelatihan (Learning rate). Data yang dijadikan sebagai input adalah citra identifikasi jenis penyakit tanaman padi berdasarkan bentuk bercak daun padi  yaitu dengan ukuran piksel 95x35 dan berekstensi BITMAP (.bmp). Standar keberhasilan sistem identifikasi ini adalah menghitung nilai Termination Error Rate dan tingkat keakuratan dalam identifikasi bentuk bercak daun. Dari simulasi ini diperoleh struktur Jaringan Syaraf Tiruan dengan jumlah nilai learning rate 0,02 dan jumlah epoch sebesar 5 kali. Sistem yang terbentuk mampu mengenali citra yang berisi bentuk bercak daun yang digunakan sebagai bobot dengan nilai keakuratan optimum yaitu 73,33% dengan komposisi penyakit bercak coklat (BC) 20 %, Blast  20 % dan cercak cercospora 33,33%.


2018 ◽  
Vol 15 (2) ◽  
pp. 144
Author(s):  
Elvia Budianita Budianita

Trimester I adalah masa dimana 3 bulan pertama kehamilan yakni 0 sampai 12 minggu awal kehamilan. Pada masa ini tubuh ibu akan banyak mengalami perubahan seiring berkembangnya janin. Pada ibu-ibu hamil pada fase trimester I terkadang ditemukan beberapa gangguan kehamilan yaitu, Abortus, Anemia Kehamilan, Hiperemesis Gravidarum tingkat I, Hiperemesis Gravidarum tingkat II, Kehamilan Ektopik, dan Mola hidatidosa. Untuk membantu pasien dalam mengenali gangguan kehamilan pada trimester I ini maka peneliti berinisiatif merancang suatu sistem yang menerapkan konsep jaringan syaraf tiruan dengan metode LVQ 2 (Learning Vector Quantization) dalam mengenali gangguan kehamilan trimester I berdasarkan gejala gangguan kehamilan trimester I. Ada 41 gejala penyakit, dan 6 penyakit sebagai data masukan. Sistem akan mengklasifikasikan penyakit dengan proses pembelajaran dan pengujian ke dalam 6 jenis penyakit, berdasarkan pengujian metode LVQ2 cukup baik di terapkan dalam pengenalan pola gejala gangguan kehamilan, di buktikan dari hasil pengujian yang di lakukan menggunakan window 0.1, 0.3, 0.5, dan 0, data latih 90 dan data uji 18 didapat akurasi terbaik 100% dan rata-rata akurasi 97.68%  dengan nilai parameter pembelajaran algoritma learning rate = 0.02, 0.04, 0.06, pengurangan learning rate = 0.1, minimal learning rate = 0.01 dan nilai window (ε) =0.1, 0.3, 0.5, dan 0. Nilai w juga mempengaruhi akurasi. Kata Kunci:  Gangguan Kehamilan Trimester I, Learning Vector Quantization 2, Window


Author(s):  
Komang Triantita Neti Lestari ◽  
Moh Ali Albar ◽  
Royana Afwani

Based on the of tourist visits of West Nusa Tenggara from 2013 to 2017 obtained from Tourism Office of NTB Province the number of tourist visits changes every year. a prediction is needed to estimate the number of tourist visits in the upcoming year to help the government in making policy. The Tourism Office currently estimates the tourist visit based on the events that will be carried out. There are no mathematic calculations in estimations. This study uses Backpropagation to predict the number of tourist visits. Backpropagation is a good and accurate in predicting process involving fluctuating data. This study aims to examine the effectiveness of the backpropagation in predicting the number of tourist visits based on the minimum value of the Mean Square Error (MSE). Using a maximum iteration of 1500, learning rate 0.3 and the number of hidden layers 21 produces the minimum MSE value of 0.003901 and the prediction of tourist visits in 2018 has the most tourist arrivals in July 2018 of 465.202 tourists and the lowest visit was in February 2018, which estimated to 236.864 tourists.


Sign in / Sign up

Export Citation Format

Share Document