scholarly journals DEVELOPMENT OF THE THEORY OF INTERACTION OF THE VIBRATING PLATFORM WITH CONCRETE MIX

Author(s):  
J. Batsaikhan ◽  
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Tomasz Rudnicki

The article presents a new functional method of designing self-compacting concrete (SCC). The assumptions of the functional method of designing self-compacting concrete were based on the double coating assumption (i.e., it was assumed that the grains of coarse aggregate were coated with a layer of cement mortar, whereas the grains of sand with cement paste). The proposed method is composed of four stages, each of which is responsible for the selection of a different component of the concrete mix. The proposed designing procedure takes into consideration such a selection of the mineral skeleton in terms of the volumetric saturation of the mineral skeleton, which prevents the blocking of aggregate grains, and the designed liquid phase demonstrated high structural viscosity and low yield stress. The performed experimental studies, the simulation of the elaborated mathematical model fully allowed for the verification of the theoretical assumptions that are the basis for the development of the method of designing self-compacting concrete.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Y. Amakye ◽  
S. J. Abbey ◽  
A. O. Olubanwo

AbstractThe reuse of waste materials in civil engineering projects has become the topic for many researchers due to their economic and environmental benefits. In this study, brick dust waste (BDW) derived from cutting of masonry bricks and demolition waste which are normally dumped as land fill is used as partial replacement of cement in a concrete mix at 10%, 20% and 30% respectively, with the aim of achieving high strength in concrete using less cement due to the environmental problems associated with the cement production. To ascertain the effects of BDW on the consistency and mechanical performance of concrete mix, laboratory investigations on the workability of fresh concrete and the strength of hardened concrete were carried out. Slump and compaction index test were carried out on fresh concrete mix and unconfined compressive strength (UCS) test and tensile strength test were conducted on hardened concrete specimen after 7, 14 and 28 days of curing. The results showed high UCS and tensile strength with the addition of 10% BDW to the concrete mix, hence achieving the set target in accordance with the relevant British standards. A gradual reduction in strength was observed as BDW content increases, however, recording good workability as slump and compaction index results fell within the set target range in accordance with relevant British standards. Findings from this study concluded that BDW can partially replace cement in a concrete mix to up to 30% igniting the path to a cleaner production of novel concrete using BDW in construction work.


2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


Author(s):  
Kanta Naga Rajesh ◽  
Ponnada Markandeya Raju ◽  
Kapileswar Mishra ◽  
Pavan Kumar Madisetti

1995 ◽  
Vol 121 (9) ◽  
pp. 633-638 ◽  
Author(s):  
R. Khanbilvardi ◽  
S. Afshari

2013 ◽  
Vol 423-426 ◽  
pp. 1031-1035
Author(s):  
Jin Jun Wang ◽  
Guo Feng Li ◽  
De Chuan Meng

Peridotite containing high crystal water is used as concrete aggregates in this research. The mineral composition and thermal stability of peridotite are experimentally analyzed, and the concrete mix proportion design is optimized. The neutron shielding performance of peridotite concrete specimens are tested using 241Am-Be neutron source. The transmission data of different thickness and different energy neutron are calculated. It concludes that peridotite concrete has a good performance in neutron shielding and peridotite is an excellent neutron shielding material.


2012 ◽  
Vol 622-623 ◽  
pp. 472-477
Author(s):  
Ali A. Karakhan ◽  
Angham E. Alsaffar

The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.


2013 ◽  
Vol 46 ◽  
pp. 150-155 ◽  
Author(s):  
Merve Sogancioglu ◽  
Esra Yel ◽  
Ulku Sultan Yilmaz-Keskin

Sign in / Sign up

Export Citation Format

Share Document