MATHEMATICAL MODEL OF THE ELECTRICAL SUPPLY SYSTEM OF THE ADMINISTRATIVE BUILDING WITH A KINETIC ENERGY STORAGE DEVICE

2018 ◽  
Vol 1 (41) ◽  
pp. 47-52
Author(s):  
N. Savchenko ◽  
◽  
S. Shevchenko ◽  
Author(s):  
Yuri N. Bulatov ◽  
Andrey V. Kryukov ◽  
Konstantin V. Suslov

The article discusses the power supply system of an industrial enterprise, which included a turbine generator plant operating on the basis of a synchronous generator equipped with predictive voltage and rotor speed controllers, as well as a high-power electric energy storage device. A description of the models of this plant, predictive controllers and energy storage, as well as the results of modeling when the system goes into an isolated mode of operation are given. Simulation was performed in MATLAB environment using Simulink and SimPowerSystems packages. The purpose of the work was to study the behavior of the proposed predictive controllers during the transition of the power supply system to the island (isolated) mode. Based on the results of computer simulation, it was concluded that the use of predictive controllers improves the damping properties of the system. The use of an energy storage device that is automatically connected to the network when the voltage drops, allows to reduce the overvoltage at the terminals of the generator during its unloading, as well as to reduce the required mechanical power on the turbine shaft in comparison with a permanently connected device. Predictive controllers can be recommended to increase the stability of distributed generation plants when switching to an isolated mode. It is advisable to conduct further research in the direction of creating algorithms for coordinated operation of controllers


2012 ◽  
Vol 721 ◽  
pp. 263-268
Author(s):  
Vladimir Sokolovsky ◽  
Victor Meerovich ◽  
Shaul Goren ◽  
Lidia Chubraeva ◽  
Istvan Vajda

It was experimentally shown that joint application of a solar station and a superconducting flywheel (a kinetic energy storage device) can solve the main problem of renewable energy sources: to provide uninterrupted and controlled power supplying. The storage device changes its operation mode (stand-by, charging, discharging) practically without any delay and its use leads to an increase of the transient stability of a power system.


Author(s):  
Bincy Lathakumary Vijayan ◽  
Amina Yasin ◽  
Izan Izwan Misnon ◽  
Gopinathan M. Anilkumar ◽  
Fathalla Hamed ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


Sign in / Sign up

Export Citation Format

Share Document