scholarly journals Improving the Accuracy of the State Estimation Algorithm in the Power System Based on the Location of PMUs and Voltage Angle Relationships

Author(s):  
Ebadollah AMOUZAD MAHDİRAJİ
Author(s):  
Shunjiang Wang ◽  
Baoming Pu ◽  
Ming Li ◽  
Weichun Ge ◽  
Qianwei Liu ◽  
...  

This paper investigates the state estimation problem of power systems. A novel, fast and accurate state estimation algorithm is presented to solve this problem based on the one-dimensional denoising autoencoder and deep support vector machine (1D DA–DSVM). Besides, for further reducing the computation burden, a partitioning method is presented to divide the power system into several sub-networks and the proposed algorithm can be applied to each sub-network. A hybrid computing architecture of Central Processing Unit (CPU) and Graphics Processing Unit (GPU) is employed in the overall state estimation, in which the GPU is used to estimate each sub-network and the CPU is used to integrate all the calculation results and output the state estimate. Simulation results show that the proposed method can effectively improve the accuracy and computational efficiency of the state estimation of power systems.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1967
Author(s):  
Gaurav Kumar Roy ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.


Author(s):  
Hao Yang ◽  
Yilian Zhang ◽  
Wei Gu ◽  
Fuwen Yang ◽  
Zhiquan Liu

This paper is concerned with the state estimation problem for an automatic guided vehicle (AGV). A novel set-membership filtering (SMF) scheme is presented to solve the state estimation problem in the trajectory tracking process of the AGV under the unknown-but-bounded (UBB) process and measurement noises. Different from some existing traditional filtering methods, such as Kalman filtering method and [Formula: see text] filtering method, the proposed SMF scheme is developed to provide state estimation sets rather than state estimation points for the system states to effectively deal with UBB noises and reduce the requirement of the sensor precision. Then, in order to obtain the state estimation ellipsoids containing the true states, a set-membership estimation algorithm is designed based on the AGV physical model and S-procedure technique. Finally, comparison examples are presented to illustrate the effectiveness of the proposed SMF scheme for an AGV state estimation problem in the present of the UBB noises.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 900 ◽  
Author(s):  
Shiwei Xia ◽  
Qian Zhang ◽  
Jiangping Jing ◽  
Zhaohao Ding ◽  
Jing Yu ◽  
...  

Effective state estimation is critical to the security operation of power systems. With the rapid expansion of interconnected power grids, there are limitations of conventional centralized state estimation methods in terms of heavy and unbalanced communication and computation burdens for the control center. To address these limitations, this paper presents a multi-area state estimation model and afterwards proposes a consensus theory based distributed state estimation solution method. Firstly, considering the nonlinearity of state estimation, the original power system is divided into several non-overlapped subsystems. Correspondingly, the Lagrange multiplier method is adopted to decouple the state estimation equations into a multi-area state estimation model. Secondly, a fully distributed state estimation method based on the consensus algorithm is designed to solve the proposed model. The solution method does not need a centralized coordination system operator, but only requires a simple communication network for exchanging the limited data of boundary state variables and consensus variables among adjacent regions, thus it is quite flexible in terms of communication and computation for state estimation. In the end, the proposed method is tested by the IEEE 14-bus system and the IEEE 118-bus system, and the simulation results verify that the proposed multi-area state estimation model and the distributed solution method are effective for the state estimation of multi-area interconnected power systems.


2014 ◽  
Vol 960-961 ◽  
pp. 1039-1042
Author(s):  
Gui Hua Lin ◽  
Yu Ying Wang ◽  
Tao Wang

Take full advantage of the PMU's accurate mass measurement data is the effective method to improve the calculation accuracy of power system state estimation. This essay puts forward the state estimation method of power system based on the Taylor series method. It analysis of power system operating conditions based on the real-time measurement of Wide area measurement system, divides the state time, establishes the equation of state of the measurement data by curve fitting method in the period of state time, creates a new state estimation calculation method by Taylor series method, constructs a new voltage characteristic curve calculation method, determines the system state and achieve the continuity of power systems steady-state analysis. The method put forward in this essay has been verified through IEEE-30 Node System, and the efficiency of it has been fully proved by the example results.


2013 ◽  
Vol 347-350 ◽  
pp. 2077-2081
Author(s):  
Jia Yi Zang

In power system state estimation, bad data of local area can make state estimation difficult, and accuracy of measurement can also have great influence on the result of state estimation. Based on grid partition, this paper forms a lot of independent sub area, then measurement weights are adjusted using the state estimation result of sub area. This overcomes the defects of uniform weights distribution, and improves the accuracy of state estimation


2015 ◽  
Vol 64 (2) ◽  
pp. 237-248
Author(s):  
Piotr Kozierski ◽  
Marcin Lis ◽  
Adam Owczarkowski ◽  
Dariusz Horla

Abstract An approach to power system state estimation using a particle filter has been proposed in the paper. Two problems have been taken into account during research, namely bad measurements data and a network structure modification with rapid changes of the state variables. For each case the modification of the algorithm has been proposed. It has also been observed that anti-zero bias modification has a very positive influence on the obtained results (few orders of magnitude, in comparison to the standard particle filter), and additional calculations are quite symbolic. In the second problem, used modification also improved estimation quality of the state variables. The obtained results have been compared to the extended Kalman filter method


1990 ◽  
Vol 19 (3) ◽  
pp. 195-206 ◽  
Author(s):  
S.A. Soliman ◽  
G.S. Christensen ◽  
D.H. Kelly ◽  
K.M. El-Naggar

Sign in / Sign up

Export Citation Format

Share Document