scholarly journals Integrated Surface Water-Groundwater Modelling

2013 ◽  
Vol 7 (3) ◽  
pp. 281-295

Two Integrated Surface water - Groundwater flow Models (ISGMs) have been developed at the National Technical University of Athens (NTUA), Greece and Cardiff University (CU), UK to investigate surface water-groundwater interactions. The models are based on physical processes and are capable of describing more accurately the recharge and discharge flow paths between surface and ground waters. The NTUA ISGM consists of a 3-D surface water flow sub-model (FLOW-3DL) and a 3-D saturated groundwater flow sub-model. The CU ISGM is based on the 2-D surface water model DIVAST, which has been extended to include 2-D saturated groundwater flow. Both models use the finite difference method and orthogonal grids. The momentum and mass conservation equations are the governing equations for both surface and groundwater flows. The ISGMs have been applied to two simple cases and their results have been compared to computations using only surface water models (FLOW-3DL and DIVAST) to demonstrate the need to use ISGMs for accurate and satisfactory calculations. Furthermore, the results of the two ISGMs are compared for a channel, which fully penetrates an aquifer. The two ISGMs show a similar behaviour; the NTUA ISGM exhibits a slightly slower response of the aquifer water levels to the water level changes in the channel than the CU ISGM.

Author(s):  
Kent Werner ◽  
Emma Bosson ◽  
Sten Berglund

The safety assessments of potential geological repositories for spent nuclear fuel in Sweden are supported by modelling of groundwater flow in rock, to predict locations (exit points) where radionuclides from the deep repository may enter land, surface waters and associated ecosystems above the rock. This modelling includes detailed rock descriptions, but simplifies the upper part of the flow domain, including representations of meteorological processes and interactions with hydrological objects at the surface. Using the Laxemar candidate site as example, this paper investigates some potentially important consequences of these simplifications. Specifically, it compares particle tracking results obtained by a deep-rock groundwater flow model (CONNECTFLOW) and by MIKE SHE-MIKE 11, which contains detailed descriptions of near-surface/surface water flow. Overall, the models predict similar exit point patterns, occurring as clusters along streams in valleys, at a lake, and in sea bays. However, on a detailed level there are some prediction differences, which may be of importance for biosphere-focused safety assessments. CONNECTFLOW essentially predicts flow paths through the repository that follow fractures and deformation zones, outcropping in valleys. In comparison, MIKE SHE-MIKE 11 provides more detailed information on near-surface water flow paths, including the associated exit points and inputs to assessments of radionuclide retention.


2010 ◽  
Vol 13 (4) ◽  
pp. 741-759
Author(s):  
L. De Doncker ◽  
P. Troch ◽  
R. Verhoeven ◽  
K. Buis ◽  
P. Meire

The 1D model package STRIVE is verified for simulating the interaction between ecological processes and surface water flow. The model is general and can be adapted and further developed according to the research question. The hydraulic module, based on the Saint-Venant equations, is the core part. The presence of macrophytes influences the water quality and the discharge due to the flow resistance of the river, expressed by Manning's coefficient, and allows an ecological description of the river processes. Based on the advection–dispersion equation, water quality parameters are incorporated and modelled. Calculation of the water quantity parameters, coupled with water quality and inherent validation and sensitivity analysis, is the main goal of this research. An important study area is the River Aa near Poederlee (Belgium), a lowland river with a wealth of vegetation growth, where discharge and vegetation measurements are carried out on a regular basis. The developed STRIVE model shows good and accurate calculation results. The work highlights the possibility of STRIVE to model flow processes, water quality aspects and ecological interaction combined and separately. Coupling of discharges, water levels, amount of biomass and tracer values provides a powerful prediction modelling tool for the ecological behaviour of lowland rivers.


2020 ◽  
Vol 15 (3) ◽  
pp. 162-171
Author(s):  
Andrej Šoltész ◽  
Dana Baroková ◽  
Zinaw Dingetu Shenga ◽  
Michaela Červeňanská

Presented paper deals with the hydraulic assessment of groundwater flow in the area affected by the realization of the hydraulic gate on the Klátov branch and in the adjacent territory of a dike, which is located on the right-side of Little Danube. This hydraulic assessment is part of the project of the Slovak Water Management Enterprise, which also aims to increase the height and seal the dike on the right-side of the Little Danube. Generally, the project is divided into three phases (Phase I, II and III) to implement different technical measures to protect the area from flooding. The assumption for the execution of the technical measures of the mentioned three project phases is a continuous flood protection of part of the Žitný ostrov area around the Little Danube and the Klátov River branch in the reach from Kolárovo to Jahodná town. Therefore, a 3D mathematical model was created to simulate groundwater flow by changing boundary conditions of surface water flow during flood periods.


2019 ◽  
Vol 122 (3) ◽  
pp. 283-298
Author(s):  
S.S.E. Mndaweni ◽  
S. Naicker ◽  
D. Blake

Abstract The Late Archaean to Early Proterozoic Malmani Subgroup comprises of dolomites and limestones forming part of the Chuniespoort Group within the Transvaal Supergroup, outcropping as an arc structure east of the Pretoria Group along the Limpopo and Mpumalanga escarpment. These rocks form a fractured karst aquifer in the area and have a high degree of heterogeneity and anisotropy. The aquifers are unconfined to semi-confined, with compartmentalisation by dolerite dykes being a possible effect (if the dykes are large and extensive enough) due to the dykes acting as aquitards or barriers to groundwater flow. The contact zones between the dolomite formations and dolerite dykes are usually fractured however, and along with any other faults and fractures result in preferential dolomite dissolution and the development of groundwater flow paths in the area. Borehole yields ranges between 2 to 5 l/s and potentially >10 l/s per borehole in the vicinity of large regional fractures or dolerite intrusions. Groundwater from the Malmani Subgroup generally meets the drinking water quality standards for major constituents and it is of Mg-Ca-HCO3 nature. Groundwater development within this particular hydrostratigraphy is linked to potential well field target zones that take cognisance of various surface water-groundwater interaction affecting surface water discharge rates as well as groundwater over-abstraction concerns. Preliminary results have indicated that given a groundwater potential of 44 hm3/a, the aquifer will be able to support abstractions of up to 29 hm3/a if systematically developed adaptively and could be used and managed conjunctively with surface water to alleviate the pressure on the already stressed Olifants Water Management Area.


2019 ◽  
Vol 98 ◽  
pp. 09037
Author(s):  
Zhuo Zhang ◽  
Huaming Guo ◽  
Weiguang Zhao ◽  
Haicheng Weng

Temporal variations in water levels are crucial for understanding As behaviour in groundwater systems. Groundwater levels were recorded in irrigation wells in non-irrigation and irrigation seasons. Groundwater samples were collected yearly in irrigation wells from 2014 to 2016 and in a multilevel well from 2015 to 2016 for analysing geochemical parameters. Results showed that groundwater flow direction was reversed due to groundwater pumping. The change of groundwater flow led to the surface water, as a new groundwater recharge source, which flushed the near-surface sediments enriched in soluble components and increased groundwater TDS. The labile organic matter introduced by the surface water recharge fueled dissimilatory reduction of Fe(III) oxides and further increased groundwater As concentration.


2016 ◽  
Author(s):  
Inge E. M. de Graaf ◽  
Rens L. P. H. van Beek ◽  
Tom Gleeson ◽  
Nils Moosdorf ◽  
Oliver Schmitz ◽  
...  

Abstract. Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts as well as evaporation in areas with shallow water tables. Lateral flows between basins can be a significant part of the basins water budget, but most global-scale hydrological models do not consider surface water-groundwater interactions and do not include a lateral groundwater flow component. In this study we simulate groundwater head fluctuation and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5 arc-minutes) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6 % to 20 % of the total aquifer area) changes timing and amplitude of head fluctuations, as well as flow paths and groundwater-surface water interactions rates. Also, timing and magnitude of groundwater head fluctuations are better estimated when confining layers are included. Groundwater flow paths within confining layers are shorter then paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths are simulated crossing catchment boundaries, thereby supporting water budgets of neighboring catchments or aquifer systems. The two-layer transient groundwater model is used to identify hotspots of groundwater depletion resulting in an estimated global groundwater depletion of 6700 km3 over the 1960–2010, consistent with estimates of previous studies.


Sign in / Sign up

Export Citation Format

Share Document