scholarly journals Optimal recovery of operator sequences

2021 ◽  
Vol 56 (2) ◽  
pp. 193-207
Author(s):  
V. F. Babenko ◽  
N. V. Parfinovych ◽  
D. S. Skorokhodov

In this paper we solve two problems of optimal recovery based on information given with an error. First is the problem of optimal recovery of the class $W^T_q = \{(t_1h_1,t_2h_2,\ldots)\,\colon \,\|h\|_{\ell_q}\le 1\}$, where $1\le q < \infty$ and $t_1\ge t_2\ge \ldots \ge 0$ are given, in the space $\ell_q$. Information available about a sequence $x\in W^T_q$ is provided either (i) by an element $y\in\mathbb{R}^n$, $n\in\mathbb{N}$, whose distance to the first $n$ coordinates $\left(x_1,\ldots,x_n\right)$ of $x$ in the space $\ell_r^n$, $0 < r \le \infty$, does not exceed given $\varepsilon\ge 0$, or (ii) by a sequence $y\in\ell_\infty$ whose distance to $x$ in the space $\ell_r$ does not exceed $\varepsilon$. We show that the optimal method of recovery in this problem is either operator $\Phi^*_m$ with some $m\in\mathbb{Z}_+$ ($m\le n$ in case $y\in\ell^n_r$), where \smallskip\centerline{$\displaystyle \Phi^*_m(y) = \Big\{y_1\left(1 - \frac{t_{m+1}^q}{t_{1}^q}\Big),\ldots,y_m\Big(1 - \frac{t_{m+1}^q}{t_{m}^q}\Big),0,\ldots\right\},\quad y\in\mathbb{R}^n\text{ or } y\in\ell_\infty,$} \smallskip\noior convex combination $(1-\lambda) \Phi^*_{m+1} + \lambda\Phi^*_{m}$. The second one is the problem of optimal recovery of the scalar product operator acting on the Cartesian product $W^{T,S}_{p,q}$ of classes $W^T_p$ and $W^S_q$, where $1 < p,q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and $s_1\ge s_2\ge \ldots \ge 0$ are given. Information available about elements $x\in W^T_p$ and $y\in W^S_q$ is provided by elements $z,w\in \mathbb{R}^n$ such that the distance between vectors $\left(x_1y_1, x_2y_2,\ldots,x_ny_n\right)$ and $\left(z_1w_1,\ldots,z_nw_n\right)$ in the space $\ell_r^n$ does not exceed $\varepsilon$. We show that the optimal method of recovery is delivered either by operator $\Psi^*_m$ with some $m\in\{0,1,\ldots,n\}$, where \smallskip\centerline{$\displaystyle \Psi^*_m = \sum_{k=1}^m z_kw_k\Big(1 - \frac{t_{m+1}s_{m+1}}{t_ks_k}\Big),\quad z,w\in\mathbb{R}^n,$} \smallskip\noior by convex combination $(1-\lambda)\Psi^*_{m+1} + \lambda\Psi^*_{m}$. As an application of our results we consider the problem of optimal recovery of classes in Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the space $\ell_p$ with $p > 2$.

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1915
Author(s):  
Lateef Olakunle Jolaoso ◽  
Maggie Aphane

Herein, we present a new parallel extragradient method for solving systems of variational inequalities and common fixed point problems for demicontractive mappings in real Hilbert spaces. The algorithm determines the next iterate by computing a computationally inexpensive projection onto a sub-level set which is constructed using a convex combination of finite functions and an Armijo line-search procedure. A strong convergence result is proved without the need for the assumption of Lipschitz continuity on the cost operators of the variational inequalities. Finally, some numerical experiments are performed to illustrate the performance of the proposed method.


2001 ◽  
Vol 16 (02) ◽  
pp. 91-98 ◽  
Author(s):  
JULES BECKERS ◽  
NATHALIE DEBERGH ◽  
JOSÉ F. CARIÑENA ◽  
GIUSEPPE MARMO

Previous λ-deformed non-Hermitian Hamiltonians with respect to the usual scalar product of Hilbert spaces dealing with harmonic oscillator-like developments are (re)considered with respect to a new scalar product in order to take into account their property of self-adjointness. The corresponding deformed λ-states lead to new families of coherent states according to the DOCS, AOCS and MUCS points of view.


1973 ◽  
Vol 16 (2) ◽  
pp. 239-244
Author(s):  
M. A. Malik

Let H be a Hilbert space; ( , ) and | | represent the scalar product and the norm respectively in H. Let A be a closed linear operator with domain DA dense in H and A* be its adjoint with domain DA*. DA and DA*are also Hilbert spaces under their respective graph scalar product. R(λ; A*) denotes the resolvent of A*; complex plane. We write L = D — A, L* = D — A*; D = (l/i)(d/dt).


2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


2020 ◽  
pp. 3366-3371
Author(s):  
Eiman Al-janabi

In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.


Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1677-1693 ◽  
Author(s):  
Shenghua Wang ◽  
Yifan Zhang ◽  
Ping Ping ◽  
Yeol Cho ◽  
Haichao Guo

In the literature, the most authors modify the viscosity methods or hybrid projection methods to construct the strong convergence algorithms for solving the pseudomonotone equilibrium problems. In this paper, we introduce some new extragradient methods with non-convex combination to solve the pseudomonotone equilibrium problems in Hilbert space and prove the strong convergence for the constructed algorithms. Our algorithms are very different with the existing ones in the literatures. As the application, the fixed point theorems for strict pseudo-contraction are considered. Finally, some numerical examples are given to show the effectiveness of the algorithms.


2019 ◽  
Vol 15 (05) ◽  
pp. 925-933
Author(s):  
Abhash Kumar Jha ◽  
Brundaban Sahu

We construct certain Jacobi cusp forms of several variables by computing the adjoint of linear map constructed using Rankin–Cohen-type differential operators with respect to the Petersson scalar product. We express the Fourier coefficients of the Jacobi cusp forms constructed, in terms of special values of the shifted convolution of Dirichlet series of Rankin–Selberg type. This is a generalization of an earlier work of the authors on Jacobi forms to the case of Jacobi forms of several variables.


1988 ◽  
Vol 40 (5) ◽  
pp. 1272-1280 ◽  
Author(s):  
Takahiko Nakazi

We let T2 be the torus that is the cartesian product of 2 unit circles in C. The usual Lebesgue spaces, with respect to the Haar measure m of T2, are denoted by Lp = Lp(T2), and Hp = Hp(T2) is the space of all f in LP whose Fourier coefficientsare 0 as soon as at least one component of (j, ℓ) is negative.A closed subspace M of L2 is said to be invariant ifWhenever this is the case, it follows that fM ⊂ M for every f in H∞. One can ask for a classification or an explicit description (in some sense) of all invariant subspaces of L2, but this seems out of reach.


Sign in / Sign up

Export Citation Format

Share Document