MILLING EFFECTIVENESS INCREASE BY MEANS OF HARD-ALLOY COMPOUND END MILLING CUTTERS

2021 ◽  
Vol 2021 (6) ◽  
pp. 4-10
Author(s):  
Bori Mokrickiy ◽  
Anna Morozova ◽  
Vladislav Vereschagin

The investigation purpose: the effectiveness increase of hard-alloy end milling cutters at the expense of new milling cutter design development conventionally called compound milling cutters. The problem solved during investigation: the reveal of the most efficient fields of compound milling cutter use. The scientific novelty of the work: the formation of a new kind of hard-alloy end milling cutter design, to avoid milling cutter destruction in the place of shank end mounting in the chuck of the machine a shank end is made of structural steel and soldered with a hard-alloy cutting part of the milling cutter. As a result of the investigation it was defined: a) compound milling cutters compete with monolithic milling cutters in accuracy during billet production of parts at a lower cost of milling cutters; b) a compound milling cutter with a diameter of 16 mm and a milling cutter length of 92 mm substitute successfully a monolithic milling cutter by production accuracy and ensures cost reduction of a product by 4%; c) a compound milling cutter with a length of 220 mm as compared with a monolithic milling cutter ensures product cost reduction by 38% and applicable for general aims at engineering enterprises.

2014 ◽  
Vol 800-801 ◽  
pp. 465-469
Author(s):  
An Shan Zhang ◽  
Xian Li Liu ◽  
Shu Cai Yang ◽  
Qi Zhang

Complex cavity generally is machined in 3 axis or 3+2 axis machine tools, it has large amount of metal to be removed. For complex cavity machining, the cutting speed of ball end mill`s head point is zero, which makes its end milling ability poor; Torus cutter `s flat bottom width is wide, which causes curvature interference and concave-uncut. So this article designs a new kind of cutter for complex cavity roughing and semi-finishing, which can improve ball end mill`s poor end milling ability and decrease flat-end width. The simulation results show that the new cutter`s feasibility of machining complex cavity is better, and it can obviously reduce the amount of owe cutting compared with the torus cutter; At the same time, the new cutter can improve machining efficiency by 32.4% compared with the ball end mill, and good surface can also be generated.


Author(s):  
Xuedong Zhang ◽  
Shuqin Kang ◽  
Miaole Hou ◽  
Xianglei Liu

With the rapid development of network technology, large enterprises have established their own online learning and examination system respectively. However, as those network examination systems are dispersive, closed and disconnected, so various resources are unable to be utilized in a balanced way, which may cause substantial waste of enterprise resources. To solve such a problem, the emerging cloud computing technology with the characteristics of service on demand and dynamic expansion capability, provides a possibility of a shared network examination system with lower cost, named as cloud exam support service. A feasible solution for the application of the cloud computing technology in the network examination, which combines the theoretical analysis, system design and technical implementation, is put forward in this paper. The design, development, and pilot application of the cloud examination system described in this paper show that this study is highly practical, operable, and worthy of application and popularization.


2020 ◽  
Vol 10 (3) ◽  
pp. 818
Author(s):  
Minli Zheng ◽  
Chunsheng He ◽  
Shucai Yang

The insertion of micro-textures plays a role in reducing friction and increasing wear resistance of the cutters, which also has a certain impact on the stress field of the cutter during milling. Therefore, in order to study the mechanisms of friction reduction and wear resistance of micro-textured cutters in high speed cutting of titanium alloys, the dynamic characteristics of the instantaneous stress field during the machining of titanium alloys with micro-textured cutters were studied by changing the distribution density of the micro-textures on the cutter. First, the micro-texture insertion area of the ball-end milling cutter was theoretically analyzed. Then, variable density micro-textured ball-end milling cutters and non-texture cutters were used to cut titanium alloy, and the mathematical model of milling force and cutter-chip contact area was established. Then, the stress density functions of different micro-texture density cutters and non-texture cutters were established to simulate the stress fields of variable density micro-textured ball-end milling cutters and non-texture cutters. Finally, the genetic algorithm was used to optimize the variable density distribution of micro-textured cutters in which the instantaneous stress field of the cutters was taken as the optimization objective. The optimal solution for the variable density distribution of the micro-textured cutter in the cutter-chip tight contact area was obtained as follows: the texture distribution densities in the first, second, and third areas are second, and third areas are 0.0905, 0.0712, and 0.0493, respectively.


2015 ◽  
Author(s):  
Jamie D. Skovron ◽  
Durul Ulutan ◽  
Laine Mears ◽  
Duane Detwiler ◽  
Daniel Paolini ◽  
...  

An increase in fuel economy standards has affected automakers’ decision toward designing lightweight vehicles and therefore transitioning from steel-based bodies to ones predominantly composed of aluminum. An introduction to lightweight materials couples that of lightweight joining with a thermo-mechanical process, Flow Drill Screwdriving (FDS). This process is favored in terms of robustness, short installation time, and only requiring access to one side. The most significant challenge of this process is reducing the material sheet separation to minimize any possibility of corrosion buildup. Warm forming of aluminum has been shown to increase ductility and formability of the material and thus the process benefits from a reduced cycle time that leads to cost reduction. In this study, the effect of an auxiliary heat source on the flow of Al6063 is investigated for the FDS application. In order to accomplish this task, a conduction-heating ring is implemented into the FDS process to raise the material temperature and thus reduce the total cycle time. Different preprocess material temperatures are studied to determine the effect of material temperature on the process time, installation torque, and sheet separation. As a result, with the thermal assistance, a reduction in the process time up to 52%, the maximum installation torque by 20%, and sheet separation by 11% were attained, indicating better quality joints at a lower cost.


Sign in / Sign up

Export Citation Format

Share Document