Science intensive technology for effectiveness increase in manufacturing flexible aluminum and titanium alloy parts

2020 ◽  
Vol 2020 (7) ◽  
pp. 12-19
Author(s):  
Evgeniy Kiselev ◽  
Mihail Nazarov

The investigation results of effectiveness increase in manufacturing flexible parts made of titanium and aluminum alloys by means of costs decrease for technological pre-production and power use of a low-powered module ultra-sonic field are shown.

1995 ◽  
Vol 117 (4) ◽  
pp. 433-439 ◽  
Author(s):  
J. C. Newman

This paper reviews the capabilities of a plasticity-induced crack-closure model and life-prediction code, FASTRAN, to predict fatigue lives of metallic materials using small-crack theory. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (ΔKeff) under constant-amplitude loading. Some modifications to the ΔKeff-rate relations were needed in the near-threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched specimens made of several aluminum alloys and a titanium alloy under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys. An equivalent-initial-flaw-size concept was used to bound the fatigue lives for the titanium alloy. Results from the tests and analyses agreed well.


Author(s):  
M. Raghavan ◽  
J. Y. Koo ◽  
J. W. Steeds ◽  
B. K. Park

X-ray microanalysis and Convergent Beam Electron Diffraction (CBD) studies were conducted to characterize the second phase particles in two commercial aluminum alloys -- 7075 and 7475. The second phase particles studied were large (approximately 2-5μm) constituent phases and relatively fine ( ∼ 0.05-1μn) dispersoid particles, Figures 1A and B. Based on the crystal structure and chemical composition analyses, the constituent phases found in these alloys were identified to be Al7Cu2Fe, (Al,Cu)6(Fe,Cu), α-Al12Fe3Si, Mg2Si, amorphous silicon oxide and the modified 6Fe compounds, in decreasing order of abundance. The results of quantitative X-ray microanalysis of all the constituent phases are listed in Table I. The data show that, in almost all the phases, partial substitution of alloying elements occurred resulting in small deviations from the published stoichiometric compositions of the binary and ternary compounds.


2003 ◽  
Vol 110 ◽  
pp. 571-576 ◽  
Author(s):  
A. A. Mir ◽  
D. C. Barton ◽  
T. D. Andrews ◽  
P. Church

Author(s):  
Ekaterina Senaeva ◽  
◽  
Nataliya Pugacheva ◽  
Aleksei Makarov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document