Study of the possibilities of thermal performance enhancement of flat plate solar water collectors by using of nanofluids as heat transfer fluid

2017 ◽  
Vol 53 (3) ◽  
pp. 250-257 ◽  
Author(s):  
J. S. Akhatov ◽  
S. Z. Mirzaev ◽  
A. S. Halimov ◽  
S. S. Telyaev ◽  
E. T. Juraev
2014 ◽  
Vol 624 ◽  
pp. 332-338 ◽  
Author(s):  
Shouquat Hossain ◽  
Ali Wadi Abbas ◽  
Jeyraj Selvaraj ◽  
Ferdous Ahmed ◽  
Nasrudin Bin Abd Rahim

An investigation is reported of the thermal performance of a flat plate solar water heater with a circulating absorber pipe surface. The thermal performance of the 2-side parallel serpentine flow solar water heater depends significantly on the heat transfer rate between the absorber surface and the water, and on the amount of solar radiation incident on the absorber surface. The modified pipe arrangement has a higher characteristic length for convective heat transfer from the absorber to the water, in addition to having more surface area exposed to solar radiation. It means during the operation of water heater, more solar energy is converted into useful heat. However, this modification has reduced the efficiency of the system marginally.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 756 ◽  
Author(s):  
Nurril Ikmal Shamsul Azha ◽  
Hilmi Hussin ◽  
Mohammad Shakir Nasif ◽  
Tanweer Hussain

Various studies to improve the thermal performance of flat plate solar collector (FPSC) solar water heater have been conducted, and more are currently in progress. This study aims to review existing methods on thermal performance enhancement for FPSC and discuss on heat-transfer enhancement using vibration and its potential application for FPSC. Ten methods for improving thermal performance are identified, which include applications of nanofluids, absorber coatings, phase change materials (PCM), thermal performance enhancers, FPSC design modifications, polymer materials, heat loss reduction, mini and micro channel and heat-transfer enhancement using vibration. An examination of heat-transfer enhancement using vibration in low frequency ranges for an evacuated-tube solar collector (ETSC) solar water heater system showed that it can potentially achieve heat-transfer enhancement of up to 78%. Nevertheless, there is still a lack of research on the applications of heat-transfer enhancement using vibration on FPSC to date.


2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


Author(s):  
Sara EL Hassani ◽  
Hanane AIT Lahoussine Ouali ◽  
Benyounes Raillani ◽  
Mohammed Amine Moussaoui ◽  
Ahmed Mezrhab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document