plant germplasm
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 175 ◽  
pp. 114303
Author(s):  
V.M.V. Cruz ◽  
D.A. Dierig ◽  
A. Lynch ◽  
K. Hunnicutt ◽  
T.R. Sullivan ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xin Wang ◽  
Kaori Ando ◽  
Shan Wu ◽  
Umesh K. Reddy ◽  
Prabin Tamang ◽  
...  

AbstractMelon (C. melo L.) is an economically important vegetable crop cultivated worldwide. The melon collection in the U.S. National Plant Germplasm System (NPGS) is a valuable resource to conserve natural genetic diversity and provide novel traits for melon breeding. Here we use the genotyping-by-sequencing (GBS) technology to characterize 2083 melon accessions in the NPGS collected from major melon production areas as well as regions where primitive melons exist. Population structure and genetic diversity analyses suggested that C. melo ssp. melo was firstly introduced from the centers of origin, Indian and Pakistan, to Central and West Asia, and then brought to Europe and Americas. C. melo ssp. melo from East Asia was likely derived from C. melo ssp. agrestis in India and Pakistan and displayed a distinct genetic background compared to the rest of ssp. melo accessions from other geographic regions. We developed a core collection of 383 accessions capturing more than 98% of genetic variation in the germplasm, providing a publicly accessible collection for future research and genomics-assisted breeding of melon. Thirty-five morphological characters investigated in the core collection indicated high variability of these characters across accessions in the collection. Genome-wide association studies using the core collection panel identified potentially associated genome regions related to fruit quality and other horticultural traits. This study provides insights into melon origin and domestication, and the constructed core collection and identified genome loci potentially associated with important traits provide valuable resources for future melon research and breeding.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 241
Author(s):  
Rasha Salih ◽  
Edel Pérez-López

Clubroot is a devastating disease caused by the protist Plasmodiophora brassicae Woronin. After root hair colonization, the clubroot pathogen induces clubs that block water uptake, leading to dehydration and death. The study of the severity of plant diseases is very important. It allows us to characterize the level of resistance of plant germplasm and to classify the virulence of pathogen strains or isolates. Lately, the use of learning machines and automatization has expanded to plant pathology. Fast, reliable and unbiased methods are always necessary, and with clubroot disease indexing this is not different. From this perspective, we discuss why this is the case and how we could achieve this long overdue task for clubroot disease.


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 11-24
Author(s):  
E.L. Camadro ◽  
P. Rimieri

Plant genetic resources for food and agriculture are ex situ conserved in germplasm banks as samples (accessions) of natural or naturalized populations, either as the originally sampled propagules (mainly seeds) or their multiplications. The premises underlying ex situ conservation are that (a) it is the safest and cheapest alternative for germplasm preservation for future generations and (b) accessions are representative of the genetic diversity encountered in nature. In the past decades, ideas, alternatives and considerations have been put forward on the topic, and protocols have been devised for plant germplasm sampling, conservation and multiplication. However, limitations in the management efficiency of germplasm banks have been pointed out by international organizations. In our opinion, germplasm banks in general need to revise their functioning and management at the light of principles and methods of Genetics. To that end, it is necessary to consider the reproductive biology of higher plants -whose genetic consequences at both the individual plant and the population levels are not always either fully understood or taken into account in devising the protocols-, the genetic structures of wild and cultivated populations, and the course of the genetic material in the populations. In this paper, we discuss the three topics and provide an example of a national forage breeding program, from germplasm bank accessions as the germplasm of origin to the obtainment of commercial cultivars. Finally, we present a proposal as a base for discussion among curators, researchers and breeders. Key words: accessions, breeding, genetic resources, germplasm banks, population genetics


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 11-24
Author(s):  
E.L. Camadro ◽  
P. Rimieri

Plant genetic resources for food and agriculture are ex situ conserved in germplasm banks as samples (accessions) of natural or naturalized populations, either as the originally sampled propagules (mainly seeds) or their multiplications. The premises underlying ex situ conservation are that (a) it is the safest and cheapest alternative for germplasm preservation for future generations and (b) accessions are representative of the genetic diversity encountered in nature. In the past decades, ideas, alternatives and considerations have been put forward on the topic, and protocols have been devised for plant germplasm sampling, conservation and multiplication. However, limitations in the management efficiency of germplasm banks have been pointed out by international organizations. In our opinion, germplasm banks in general need to revise their functioning and management at the light of principles and methods of Genetics. To that end, it is necessary to consider the reproductive biology of higher plants -whose genetic consequences at both the individual plant and the population levels are not always either fully understood or taken into account in devising the protocols-, the genetic structures of wild and cultivated populations, and the course of the genetic material in the populations. In this paper, we discuss the three topics and provide an example of a national forage breeding program, from germplasm bank accessions as the germplasm of origin to the obtainment of commercial cultivars. Finally, we present a proposal as a base for discussion among curators, researchers and breeders. Key words: accessions, breeding, genetic resources, germplasm banks, population genetics


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 276
Author(s):  
Yichen Zhao ◽  
Runying Wang ◽  
Qing Liu ◽  
Xuan Dong ◽  
De-Gang Zhao

The ancient tea plant germplasm is an important resource for breeding new tea plant varieties and has great economic value. However, due to man-made and natural disturbances, it has become endangered. In order to have a better management of the conserved tea plant germplasm, it is a requirement to understand the genetic and phenotypic diversity. The aim of this study was to evaluate the genetic and phenotypic diversity of 145 ancient tea plant germplasm resources from five populations in Sandu County of Guizhou province in China. To explore the population genetics of tea plant, we successfully identified 15 simple sequence repeat (SSR) markers, which were highly polymorphic. Additionally, we applied traditional phenotypic methods to evaluate the tea plant diversity. The results suggested that the genetic and phenotypic diversity were relatively high. A total of 96 alleles were identified, and the mean polymorphic information content (PIC) value was found to be 0.66. The analysis of molecular variance (AMOVA) showed that genetic variation within the populations was greater than among the populations. Overall, our results are the valuable baseline data in developing more efficient management and breeding plans for one of the most popular non-alcoholic beverage crops, the tea plant species.


Sign in / Sign up

Export Citation Format

Share Document