Interaction between moving bubbles and an acoustic field: Controlling flows and nonlinear acoustic vision

2016 ◽  
Vol 80 (10) ◽  
pp. 1197-1202 ◽  
Author(s):  
I. N. Didenkulov ◽  
A. I. Martyanov ◽  
N. V. Pronchatov-Rubtsov
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Arif Hasan ◽  
Keith Runge ◽  
Pierre A. Deymier

AbstractThe possibility of achieving and controlling scalable classically entangled, i.e., inseparable, multipartite states, would fundamentally challenge the advantages of quantum systems in harnessing the power of complexity in information science. Here, we investigate experimentally the extent of classical entanglement in a $$16$$ 16 acoustic qubit-analogue platform. The acoustic qubit-analogue, a.k.a., logical phi-bit, results from the spectral partitioning of the nonlinear acoustic field of externally driven coupled waveguides. Each logical phi-bit is a two-level subsystem characterized by two independently measurable phases. The phi-bits are co-located within the same physical space enabling distance independent interactions. We chose a vector state representation of the $$16$$ 16 -phi-bit system which lies in a $${2}^{16}$$ 2 16 -dimensional Hilbert space. The calculation of the entropy of entanglement demonstrates the possibility of achieving inseparability of the vector state and of navigating the corresponding Hilbert space. This work suggests a new direction in harnessing the complexity of classical inseparability in information science.


1994 ◽  
Vol 02 (01) ◽  
pp. 29-51 ◽  
Author(s):  
TONY W. H. SHEU ◽  
C. C. FANG

We investigate the application of Taylor Galerkin finite element model to simulate the propagation of impulse disturbances governed by the nonlinear Euler equations. This formulation is based on the conservation variables rather than the primitive variables so that the slowly emerging sharp acoustic profiles due to the initial fluctuation can be sharply captured. We show that when the generalized Taylor Galerkin finite element model is combined with the flux corrected transport technique of Boris and Book, the acoustic field can be more accurately predicted. The proposed prediction method was validated first by simulating different classes of transport profiles before applying it to investigate the truly nonlinear acoustic field emanating from an initial square pulse.


Sign in / Sign up

Export Citation Format

Share Document